CS63 Spring 2017 Final Project Report:
Recognizing Facial Expressions with Machine Learning Algorithms

Do June Min(dminl@swarthmore.edu)
Jeremy Han(jhan2@swarthmore.edu)

May 8, 2017

1 Introduction

In this project, we tackled the problem of facial expression recognition using machine learning
algorithms. Among the algorithms used are support vector machines, decision trees, convolutional
neural networks(CNNs), and ensemble methods(Random Forests and AdaBoost). Additionally,
we created an ensemble of CNNs(light CNNs) by training a weaker CNN as a binary classifier
for each one of the seven emotions, and then aggregating their predictions. As expected, CNNs
performed better than other algorithms because they are suited to learn spatial patterns and
features. However, we observed that the ensemble of light CNNs fails to deliver a performance
on par with the full CNN. In our analysis, we discuss possible reasons behind this. Moreover,
different methods of processing and augmenting data are explored. Finally, the performance of
each algorithm is evaluated using their accuracy and through a confusion matrix, which we will
explain later in this paper. The best performance was achieved by our single CNN, which had an
accuracy of 62.8%.

2 Method and Details

2.1 Problem and Data set

This paper explains the the methods we used to attempt solving the problem of facial expression
recognition as formulated by Facial Expression Recognition 2013 challenge posted on Kaggle.

%

Y

.

¢
Figure 1: Example images from the data set. Original data vectors were converted and scaled here
for better visibility.

https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

Each example in the data set represents a 48 x 48 pixel grayscale image of a face containing one
of seven different facial expressions. The seven different facial expressions are anger, disgust, fear,
happy, sad, surprise, and neutral. Each example consisted of two columns: emotion and pixels.
The pixel column contained a list of numerical values between 0 — 255 representing the pixel values
and the emotion column contained a number corresponding to the facial expression in the image.
The data set is comprised of three sections: 28,209 examples in the training set, 3,589 examples
in the public test set, and another 3,589 examples in the private test set. The public test set
was used to test how well one’s classifier worked and the private test set was used to decide the
winner of the competition. In this project, we utilized the public test set as a tuning set for various
hyper-parameters. After we settled on hyper parameters, we used the private test set to measure
the performance of the classifiers. More details about this challenge is described in [I].

2.2 Data Processing and Augmentation

Before using the data to train the algorithms, we preprocessed the data. Each original data point
is in the form of a vector of size 2304(48 x 48). While non-convolutional networks accept this
form, CNNs require the input to be a 2d image. Thus, we executed a reshaping process so that the
original data was converted to a suitable 2d image array.

Moreover, we applied several data processing schemes to make sure that the learning algorithms
generalized as much as possible from the data set. The idea of improving a data set using various
assumptions and external knowledge about the data is called data augmentation.

2.2.1 Applying transformations to the data

One key idea in data augmentation is that one can increase the size of the data set by applying ma-
trix transformations that preserve the spatial, physical structure of the image data. Unlike general
vectors or matrices, images are special in the sense that they encode a set of spatially dependent
patterns. Thus, certain transformations that preserve this relationship between pixels produce an-
other valid image training example, as it is not identical to the original image, while providing an
unseen modified spatial pattern for the algorithm. While there are many such transformations, we
focused on and experimented with horizontal flipping(creating a mirror image), slight rotation, and
translating the image by some constant.

2.2.2 Adding noise to the training data

Another method for augmenting data is adding random noise to images. Similar to the intuition
behind dropout technique in training deep neural network, addition of noise aims to make learning
algorithms less sensitive to small noises, thereby forcing them to generalize on relevant features
and patterns. Thus, provided with non-noisy data set, the learners would be able to predict in a
robust manner. To achieve this, we experimented with randomly choosing several pixels of each
image and setting them to random numerical values.

2.2.3 Applying a predefined image filter to the whole data set

Lastly, we tried applying feature-detecting filters to the entire data set, so that the burden of
extracting features was lifted from the machine learning algorithms, allowing them to focus more
on reasoning with the relevant features to produce better predictions.

ii

Sobel filter, an edge detection algorithm often used in image processing, produces an image
where the edges are detected and emphasized. This is done by approximating the gradient of the
image intensity function. This algorithm is suitable for processing large amounts of image data
because its implementation is a simple matrix operation that can be rapidly executed by the GPU.
This filter does some of CNN’s work by identifying features that make up the image. In this project,
we used the implementation from the skimage library [2].

2.3 Algorithms

Since theory and practice suggest that convolutional neural networks are best suited to deal with
images, we focused our efforts on CNNs. We imported the keras library to construct CNNs.
However, we also experimented with other learning algorithms to see how they compared to our
CNNs. We imported the sklearn library to implement these algorithms.

2.3.1 Support Vector Machine

The idea behind SVMs is that transforming data vectors to higher dimensions could help find
decision boundaries that might not exist in the original dimensions. Although the computation
required to perform this transformation is often costly, a technique called the kernel trick allows
for efficient computation of the distance between two vectors in the desired space. Since it is
unlikely that a linear mapping would adequately capture the relationship between image vectors
and the label, we chose a radial basis function as our kernel because it is theoretically capable of
approximating any function. We experimented with various values of C', the error term. For larger
values of C', the SVM will choose a decision boundary with small margin, and with small values
of C, a hyperplane of larger margin is preferred, even if it results in some misclassifications. We
settled with C' = 10.0

2.3.2 Decision Tree

We used the scikit implementation of a decision tree as one of our classifiers. Although it does not
make much sense to treat the image as a numerical vector and treat each pixel value as a fixed
feature, we included this classifier to compare with the two ensemble methods that use decision
trees as their base classifiers: Random Forest and AdaBoost. We used the default parameters for
decision trees.

2.3.3 Random Forest

Random Forest is an ensemble method that utilizes bootstrap aggregating(bagging) of the data
to create many decision trees. Although each tree might be overfitted to the bootstrapped data
on which it is trained, one could reduce overfitting by combining their prediction into one. After
experimenting, we fixed the number of base classifiers to 200.

2.3.4 AdaBoost

AdaBoost, or adaptive boosting, combines the advantages of the boosting method and adaptively
weighing misclassified examples to produce a learner with high accuracy and low overfitting. After
experimenting, we fixed the number of base classifiers to 200.

iii

2.3.5 Single Convolutional Neural Network

We developed several different CNNs, building them layer by layer. We used the dense layer, which
is a fully connected neural network hidden layer where each input node is connected to every output
node. This layer provides shared weights. We can also apply an activation to the layer where we
specify the type of function of the node, such as relu and sigmoid.

We also used a layer called maxpooling2D. In this layer, we reduce the dimensionality of the
input using a sliding window that outputs the maximum value it sees. This is done to reduce the
number of features and computational complexity of the task, essentially producing a summary of
the image. The layer called conv2D is similar to maxpooling2D in that a sliding window is also
being used. However, the conv2D is the standard convolution layer that learns deep features about
the image.

Additionally, CNNs can support ensemble learning because of dropout layers. An ensemble of
CNNs would take too long to properly train for deep learning, so dropout layers allow us to train
just one CNN. Dropout layers are layers with nodes that have a probability p of dropping out,
a parameter that we can decide. Each time a new example is presented to the CNN, nodes are
randomly picked to drop out. This means that the incoming and outgoing weights of the dropped
out nodes do not get updated, so it is as if a new architecture was used to learn the example.
Consequently, it’s as if an ensemble of different architectures are learning the data set, but it is
really just one, saving time. When classifying the test set, no nodes are dropped out to receive
the benefit of learning from all the different architectures that were created. A link to an image
describing the full architecture of the network is included in the appendix.

The following table lists the parameters chosen to train the network.

Table 1: Training Parameters for Single CNN

Parameter Value
Optimizer Stochastic Gradient Descent
Learning rate 0.01
Decay rate le—6
Momentum 0.9
Loss Function categorical cross entropy
Batch Size 128
Epochs 30

To optimize the algorithm, we chose standard Stochastic Gradient Descent with a learning rate
of 0.01. We also set a non-zero decay rate, so that the weights can slowly converge into an optimal
configuration. Also, we chose a momentum value of 0.9. Momentum can be understood as an
extra parameter that guides the weight space search out of local minima by adding a fraction of the
previous weight update to the current one. In practice, updating weights with momentum generally
works better than vanilla update. The loss function, which was used to calculate the error of the
calculator that was propagated back to calibrate the weights, was categorical cross entropy, which
is generally considered to be better than mean square error for classification tasks. The epoch was
set to 30 because we observed a sign of overfitting for values higher(training accuracy much higher
than validation accuracy and final accuracy not improving after > 30 epochs.)

v

2.3.6 Group of CNN Binary Classifiers

The motivation behind constructing a group of binary CNNs is similar to that behind any ensemble
method. Instead of having a monolithic, large classifier with many parameters, one could train
multiple “panels of experts” and aggregate their predictions into a single prediction. To achieve
this, we created seven CNNs that are limited in layer depth and parameter numbers. Then, we
trained each of them on a modified data set that was labeled either 1 or 0, indicating whether the
image’s label is of the emotion on which the classifier is being trained. In this way, we were able to
train a binary classifier for each class of emotions. Then, we output a final prediction by taking the
label whose binary classifier had the highest output, meaning that it had the highest confidence in
believing the data to belong to a class. The full architecture of each binary network can be accessed
through a link in appendix.

To train the network, we used the same parameters as a single CNN, with the exception of the
loss function and epoch. We replaced categorical cross entropy with binary cross entropy, since
each light CNN is a binary classifier for a single emotion label. Also, because training 7 networks
was very time-consuming and each binary classifier reached a fairly high accuracy(—90%) within
few epochs, we set the epoch = 3.

2.4 Evaluation Methodology

To evaluate the result of the classifiers, we used accuracy to measure the performance. We also
utilized confusion matrices to identify and visualize with which category a certain classifier was
most having trouble. A confusion matrix is basically a breakdown of the testing examples by
its predicted label and its ground truth. Although the matrix itself does not provide a single
metric denoting a classifier’s performance, one can easily identify the strength and weak spots of a
classifier by inspecting it. Also, to make sure that the outcome was not heavily influenced by noise,
we conducted 10 iterations of testing for each classifier and averaged the accuracy.

Moreover, we reduced the possibility that our classifiers were overfitted to the training set by
setting aside a set to be used as a tuning set for hyper-parameters. For better generalization, we
could have merged the public test set to the training set. However, this resulted in overfitting, as
we would be ”training” (picking hyper-parameters so that the accuracy is increased) our algorithm
with our test set. This mistake of using one’s training set to pick/train the model is called the
cardinal sin of machine learning.

3 Results

3.1 Experiment Results

With several experiments, it became evident that data processing methods other than horizontal
flipping were irrelevant in providing more information to the algorithms. Even more, they were
causing algorithms to overfit, since those transformations were either creating images too similar to
the original, which led to overfitting, or destroying the spatial structure of the image(noise). Thus,
to save computational resources and time, we conducted our final evaluation with data processed
only by horizontal flipping, doubling the data.

The following table lists the average accuracy of each classifier in the final experiment. The
single CNN performed the best; the group of light CNNs followed with a wide margin of 10.2%.

Table 2: Accuracies of each classifier, average from 10 iterations of testing

Classifier Accuracy
Support Vector Machine 41.0%
Decision Tree 34.8%
Random Forest 46.2%
AdaBoost 48.4%
Single CNN 62.8%
Group CNN 52.6%

Although accuracy is arguably the most important metric for evaluating a multiclass classifier,
it is useful to consider different ways of analyzing the result. To this end, we generated a confusion
matrix for each classifier. The following matrices are obtained after testing each algorithm once.

700 700
o4 274 2 57 14 89 4 51 o4 108 0 32 179 87 16 69
600 600
14 20 20 5 3 7 0 0 14 4 19 3 19 6 1 3
500 500
2] 76 1 222 27 117 38 47 2] 23 0 152 145 92 45 71
T 400 © 400
a 2
= 5] 40 0 a4 701 49 13 32 = 3] 13 0 13 700 84 18 51
v 1]
2 2
= I 300 = [300
4] 64 1 91 34 313 4 87 2] 23 0 41 187 235 6 102
200 200
54 28 0 80 20 15 257 16 54 5 0 26 66 30 266 23
| 100 | 100
6 48 1 31 42 133 5 64 12 0 24 212 95 10 273
T T T T T T T —o T T T T T T T —o
N ~ + > b] © o ~ Vv % e a9 ©
Predictad lahel Predicted lahel

Figure 2: Example confusion matrices of Single CNN(left) and AdaBoost(right)

Note that both algorithms were able to correctly identify most “happy”(3) faces. On the
other hand, neither of them had much success in distinguishing “disgust” (1) from other emotions.
There is also a subtle difference in this conclusion. Note that the Single CNN most frequently
confused between “anger” and “disgust” (20 and 20), while AdaBoost mixed between “happy” and
“disgust” (19 and 19). While the former is an error often made by humans, confusion of the latter
sort rarely happens. This suggests that the Single CNN is making decisions based on learned
features of the images.

3.2 Analysis of Result

While we expected variations of CNNs to outperform other algorithms, the result suggests that the
single, strong CNN fares better than an ensemble of weak CNNs. We attribute the relative failure
of the ensemble method to its construction.

In ensemble methods, it is crucial that each base learner is i) better than random guessing, and
ii) is uncorrelated to others. While our construction satisfies the first condition, it is very likely
that each binary classifier is correlated, since they share a uniform architecture and training set.
This is a design flaw that can be mitigated by randomly selecting a subset of the data for training

vi

or differing the architecture of each network.

Moreover, there are other theoretical limitations to an ensemble of neural networks. First, no
matter how compact a neural network is compared to other networks, it is still deep in the sense that
it utilizes multiple layers of nodes to learn representations of data. This goes directly against the
idea of using multiple weak learners. It is also problematic how to properly aggregate the outputs
of the weak learners. Merely taking the label with highest probability abandons information gained
through deep network. If we try to avoid this by connecting the outputs(a vector of size 7), then
it would be a very inefficient network in which relevant representations of the data are ignored in
the final layer. Thus, we conclude that directly applying the idea behind ensemble method to CNN
does not provide any advantage over using a normal deep CNN.

4 Conclusions

Comparing the result of our experiment with systems submitted to the finished Kaggle challenge,
we see that our best learner, Single CNN, trails the top performer(username RBM, with 71.162%
accuracy) by about 10 percent. Although our system would have ranked on Top 10, it should be
noted that this challenge was hosted 4 years ago. Thus, it is expected that state-of-the-art systems
with new techniques and learning models could vastly outperform any of the reported scores.

Moreover, many practical image classification systems do not train their network from scratch.
In fact, many utilize a pre-trained large scale image classification network, such as AlexNet[3] or
VGG16[4]. These systems load up the pretrained weights of a large network and connect its output
to a custom designed layer. By freezing the pretrained network and finetuning the custom top
layer, the systems exploit the hierarchical representations of the image learned from a much larger
data set(ImageNet[5] contains over ten million hand-annotated images) to solve a simpler problem.

However, this project demonstrates that even with a relatively simple network architecture and
a simple data augmentation scheme, it is possible to achieve a reasonably high performance with
a CNN trained from scratch. Although we have failed to increase our accuracy beyond 62% using
this method alone, we believe that the possibility of improving the system by leveraging deeper
representation encoded in large, pretrained systems provides an interesting direction for future
research.

Appendix
(1) Link to Single Convolutional Network Architecture

(2) Link to Light Convolutional Network Architecture

(3) Link to Facial Expression Recognition 2013 challenge posted on Kaggle

References

[1] Tan J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben
Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou, Chetan
Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang, Dimitris Athanasakis, John Shawe-Taylor,

vii

https://github.swarthmore.edu/cs63-s17/lab10-dmin1-jhan2/blob/master/paper/figures/conv2_model.png
https://github.swarthmore.edu/cs63-s17/lab10-dmin1-jhan2/blob/master/paper/figures/light_conv_model.png
https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

Maxim Milakov, John Park, Radu Ionescu, Marius Popescu, Cristian Grozea, James Bergstra,
Jingjing Xie, Lukasz Romaszko, Bing Xu, Zhang Chuang, and Yoshua Bengio. Challenges in
representation learning: A report on three machine learning contests, 2013.

Stéfan van der Walt, Johannes L. Schonberger, Juan Nunez-Iglesias, Frangois Boulogne,
Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and the scikit-image con-
tributors. scikit-image: image processing in Python. PeerJ, 2:e453, 6 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran As-
sociates, Inc., 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierar-
chical Image Database. In C'VPR09, 2009.

viil

	Introduction
	Method and Details
	Problem and Data set
	Data Processing and Augmentation
	Applying transformations to the data
	Adding noise to the training data
	Applying a predefined image filter to the whole data set

	Algorithms
	Support Vector Machine
	Decision Tree
	Random Forest
	AdaBoost
	Single Convolutional Neural Network
	Group of CNN Binary Classifiers

	Evaluation Methodology

	Results
	Experiment Results
	Analysis of Result

	Conclusions

