Stacked Generalization Ensembles:
Comparing Stacked Generalization with Other Classification Models

Tianlu Chen

TCHEN2 @ SWARTHMORE.EDU

Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA

Irene Tang

ITANG] @ SWARTHMORE.EDU

Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA

Do June Min

DMIN1 @SWARTHMORE.EDU

Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA

Abstract

Stacked Generalization (SG) is an ensemble ap-
proach to machine learning that combines a set of
supervised-learning models into a meta-learner,
collecting predictions produced by multiple su-
pervised base learners and using those predic-
tions to train a higher-level supervised learning
classifier. Despite being a theoretically appealing
and conceptually straightforward idea, Stacked
Generalization has been largely overshadowed in
popularity by other ensemble methods such as
AdaBoost, Bagging, and Random Forests. To de-
termine whether Stacked Generalization is com-
petitive with other classification options, we con-
ducted two experiments exploring SGs in gen-
eral and four experiments comparing its perfor-
mance with those of other individual and ensem-
ble supervised learning algorithms. As expected,
we found that Stacked Generalization is indeed
a powerful ensemble method that offers a simple
and versatile approach to classification.

1. Introduction

Inspired by the human group decision making process, en-
semble learning is an approach to machine learning where
multiple models are trained to solve the same problem,
and a voting scheme is applied to determine a consen-
sus among their predictions. Compared to traditional ap-
proaches where only a single hypothesis is formed, ensem-
bles construct a set of hypotheses which gets combined into
a stronger prediction model. Ensembles provide an advan-

CPSC 66 Machine Learning Proceedings, Swarthmore College,
Fall 2017.

tage by reducing the effect of errors made by individual
classifiers.

Stacked Generalization (SG) is one such variation of en-
semble learning. SG combines a set of models into a meta-
learner, and it is typically used under a supervised learning
setup (Wolpert, 1992). Contrary to other ensemble methods
such as AdaBoost, Bagging, and Random Forests where all
of the individuals models tend to be trained using the same
learning algorithm and the same voting scheme is applied
to their predictions independent of what the data point is,
Stacked Generalization prefers to train models on a diverse
set of base learning algorithms and to use another classifier
to figure out the combining mechanism. (Breiman, 1996).

The intuition behind SGs is to first train a diverse set of base
learners (“Level-0” learners, or h;), and then use their pre-
dictions as features to train a high level learner (“Level-1”
learner, or “generalizer”). The key idea is to have the gener-
alizer learn how accurately each base-learner performs on
each section of the data, so that it can adjust their weights
accordingly.

In Experiments 1 and 4, we explored Stacked Generaliza-
tion in general by confirming the results of previous re-
search regarding optimal implementations of the algorithm.
In Experiments 2, 3, 5, and 6, we further compared Stacked
Generalization’s performance with those of other individ-
ual and ensemble schemes.

We ultimately confirmed the prior discovery that it is bet-
ter to train L1 generalizers on base classifiers that out-
put predictions as probability distributions rather than sin-
gle labels. However, we were inconclusive in confirming
whether or not it is better to train L1 generalizers using
a linear or a non-linear algorithm. Furthermore, we ul-
timately concluded that Stacked Generalizers can indeed
outperform other supervised learning methods.

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

2. Background

A Stacked Generalization ensemble consists of two levels
of classifiers: a set of “L0” base learners, and an “L1" gen-
eralizer. Any supervised learning algorithm (e.g. K-nearest
neighbors, Decision Tree, Support Vector Machines, Lo-
gistic Regression) may serve as base learners or generaliz-
ers.

To train an SG model, each of its base learners are first
trained according to their respective algorithms on the same
dataset, with a portion of the dataset held aside for training
the generalizer. The generalizer is then trained with the
held-aside dataset, using the each of the base learners as
features, their predictions on the held-aside dataset as fea-
ture values, and the set of labels on the held-aside dataset
for reference.

As illustrated in Figure 1, the model is not interactive as in-
tuition flows only from the base learners to the generalizer.
Furthermore, all of the base-learner models are indepen-
dent from each other.

A\

"/

/ /S
W5 (o)
o100

/S
/
// /
s /
."‘I
/
/
/
|

Figure 1. Intuition of a Stacked Generalization Classifier

2.1. Related Work

After Wolpert’s proposal of Stacked Generalization
(Wolpert, 1992), various follow-up discussions and exten-
sions of the model have been developed. The following
three particularly interesting ideas stood out to us, and we
have incorporated them in our experiments.

2.1.1. BASE LEARNERS: LABELS AS PROBABILITY
DISTRIBUTIONS

Ting et al. (Ting & Witten, 1999) empirically showed
that Stacked Generalization performed with higher accu-
racy when the base learners output labels as a probability
distribution, compared to when they output just the most-
likely label. Since probability distributions give insight into
the confidence of the base-learners about their predictions,
the generalizer is able to take into account higher and lower
levels of certainty when it is adjusting weights. We con-
firim Ting et al.’s claim in our Experiment 1.

2.1.2. USE A LINEAR LEVEL-1 CLASSIFIER

Breiman first demonstrated the success of Stacked Gener-
alization in the setting of using Linear Regression to train
the generalizer, coining the term stacked regressions to re-
fer to the family of generalizers that uses a linear algorithm
to combine their base learners’ prediction (Breiman, 1996).
Linear Regression is often the default algorithm because it
is easy to compute the regressions and to cary out large ex-
periments. Ting et al. have also empirically demonstrated
that generalizers trained on the multi-response least squares
linear regression algorithm peformed better than generaliz-
ers trained using other algorithms (Ting & Witten, 1999).
However, these empirical results are becoming dated with
respect to modern developments in machine learning and
we are not certain if linear methods would still outperform
non-linear classifiers such as neural networks. We compare
the effect of a non-linear Neural Network classifier with a
linear Linear Regression classifier as the level-1 learner in
our Experiment 4.

2.1.3. BASE LEARNERS: HETEROGENEOUS VS
HOMOGENOUS

Breiman reasons that Stacked Seneralization performs bet-
ter when base learners “are not overly similar”, preferably
using a heterogeneous set of different learning algorithms
to train the base learners. The diversity of the members in
an ensemble is an important deciding factor in its ability to
generalize well. The motivation of using a heterogeneous
set of base learners is to exploit independence between
them, since the generalization error can be reduced dramat-
ically by avarageing out the error. We followed Brieman’s
suggestion in our experiments, and our set of base classi-
fiers consisted of

operates with two tiers of classifiers: a “Level-1" high-level
classifier, and an ensemble of “Level-0” low-level classi-
fiers.

2.2. Applications and Extensions

Variations of Stacked Generalization have been widely
used in natural language processing (Malmasi & Dras,
2017), collaborative filtering for recommender systems
(Sill et al., 2009), and teenage distress studies (Dinakar
et al., 2014).

Furthermore, Ozay et al. (Ozay & Yarman Vural, 2012)
performed an extension of Stacked Generalization that used
fuzzy k—nn base learners trained with subsampled data and
features, and showed that such a stacked ensemble per-
forms better than AdaBoost, Random Space, and Rotation
Forest. In addition, Sill et al’s (Sill et al., 2009) performed
an extension that used feature-weighted linear stacking to
obtain meta-features to achieve higher accuracy.

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

3. Methods
3.1. Training

Stacking is about learning to combine predictions from dif-
ferent classifiers. In order to achieve this, the training por-
tion of the dataset needs to be further split into two sets.
One training set is used to train the level-O base learners,
and the other is further processed to create a training set
for the level-1 classifier. Specifically, the base-level pre-
dictions (presented as either a single label or a vector rep-
resenting probability distribution) are used as features, and
they are paired with the correct labels to form training ex-
amples for the level-1 classifier to train on.

Since training occurs only once per each base classifier, and
since each base classifiers can be trained independently,
training a Stacked Generalization model is easily a paral-
lelizable process.

Algorithm 1 explains the pseudocode for the training phase.
h; denotes a base classifier and [denotes the level-1 classi-
fier.

Algorithm 1 Training an Stacked Generalization Classifier
Input: hq, ho, ..., hy, [, Dataset (X, Y)
Output: trained classifier SG = (hq, ha, ..., hn,)
1. Split (X,Y") into 2 partitions, (X7, Y1) and (X2, Y2).
2. Train each h; on (X1, Y7).
3., <0, 0
4. For (SL'Q]. y yzj) S (.ng7 Y2)
For each h;, compute y; = h;(x2,).
X, Xi U (41,92, -, Yin)
Y <Y, Uy,
5. Train [using (X;,Y])
return SG = (hq, ho, ...

s has 1)

3.2. Prediction

Given an example datapoint to predict, the Level-1 learner
[by itself is not able to form a prediction using its original
features. In order to make the prediction, the base classi-
fiers must first cast their votes. Then, the | will consider
each of those predictions to form a more accurate one.

Algorithm 2 Prediction using an SG Classifier

Input: SG, example point
Qutput: prediction y

1. For each h;, compute y; = h;(x)
2. Compute § = 1(§1, Y2, -y Yn)-
return

After [makes a prediction and obtains an error signal, it is
possible propagate the L1 prediction back to the base clas-
sifiers. However, we do not pursue such technique in our

experiment. Instead, we focus on using comparing differ-
ent base classifiers and level-1 learners.

3.3. Base Classifiers

Any supervised learning classification algorithm can be
used as a base classifier. This includes Support Vector Ma-
chines (SVM), Naive Bayes, Decision Trees, K —-nearest-
neighbors, and Linear and Logistic Regression models.
Even a neural network can be used, but in this study we
only use neural networks as level-1 learners.

The abundance of choice presents a challenge: to com-
pletely explore the hypothesis space generated by different
combinations of classifiers is impossible. We would not
only need to take into account the quantity of each type of
classifier, but also the hyperparemeters within a base classi-
fier. Therefore, we focus on contrasting heterogeneous and
homogeneous sets of base learners.

3.3.1. HETEROGENEOUS SET OF BASE LEARNERS

Following Breiman’s advice, we aim to maximize diversity
and minimize the similarity between base classifiers. We
achieve this by including each type of classifier only once
in our collection of base classifiers. This allows us to use
each model’s inductive bias to guarantee minimal correla-
tion among base learners. We use a collection of four base
learners: Support Vector Machines, Naive Bayes, Decision
Tree, K-nearest Neighbors.

3.3.2. HOMOGENEOUS LEVEL-0 COLLECTION

Another way of creating diversity is to subsample data
points and features, as done in the Random Forest method
of selecting decision stumps. Although these methods
could be used together with heterogeneous classifiers, we
choose to focus on a case where the base collection consists
of multiple instances of a single model. Specifically, we
use decision trees with randomly chosen features, trained
on subsampled data.

3.4. Level-1 Learners

As mentioned above, typically researchers use Linear Re-
gression classifiers as the primary choice for the Level-1
learners, based on both theoretical and empirical validation
by previous researchers. Since the datasets we use are bi-
nary classification tasks, in Experiments 1, 2, 3, 5, and 6 we
also used logistic regression to train our Level-1 learner.

Nonetheless, in Experiment 4 we also test the effect of
Stacked Generalization using a non-linear classifier as our
Level-1 learner. Our non-linear model of choice is a Neural
Network, as suggested by Wolpert (Wolpert, 1992). How-
ever, Ting et al., points that Neural Networks require more

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

training example in order to perform well, and that with less
data samples Linear Regression will perform better empir-
ically. Against Ting et al.’s advice, we note that with the
recent advancements in artificial neural networks it may be
noteworthy to see if a neural network can replace linear re-
gression methods as level-1 classifiers.

3.5. Datasets and Evaluation Methodology

The results in this experiment reflect our performance us-
ing the Adult and Mushroom datasets, courtesy of the UCI
Machine Learning Repository (Lichman, 2013).

The Adult dataset is a larger dataset containing 48842 in-
stances of adults living in the United States according to
a 1994 census. It contains thirteen features and a binary
label indicating whether their income was above or be-
low $50k. Some features include age, workclass, educa-
tion, and marital-status. The distribution of labels is a bit
skewed(24.78% vs 75.22%).

The mushroom dataset is a smaller dataset containing 8124
instances of mushroom samples, predicting whether each
sample is definitely edible or non-edible. Some attributes
include cap-color, odor, gill-attachment, and stalk-color-
above-ring. The distribution of labels is about equal(51.8%
vs 48.2%).

We split each dataset into 80% training and 20% testing.
We then performed cross-validation on the training set to
generated paired data for Student’s paired ¢—test. For each
experiment, we conducted multiple paired tests. Using
cross validation method, we generated 5 folds of paired
data set, which then we used to train the algorithms. We
then use paired sample T-test over 5 folds of data to evalu-
ate our confidence in rejecting the null hypotheses. Before
any of the experiments were run, we chose the threshold
value for rejecting the null hypothesis as p < 0.05.

4. Experiments and Results

We designed six experiments that explore Stacked Gener-
alization in genera and compare its performance with those
of other individual and ensemble models. The implemen-
tation of the experiments requires the scikit-learn library
(Pedregosa et al., 2011). The following is an overview of
our research questions:

1. Does Stacked Generalization perform better when the
base classifiers output labels as probability distribu-
tions or as just a single label?

2. Does Stacked Generalization perform better than the
best individual base classifier?

3. Does Stacked Generalization perform better than per-
forming a majority vote on the base classifiers?

4. Which is better: linear or non-linear Level-1 models?

5. Does Stacked Generalization outperform Bagging and
AdaBoost?

6. Does Stacked Generalization outperform Random
Forest?

The following table illustrates our choice of hyperparame-
ters for each of the classifiers used.

Table 1. Parameters
Parameters

Classifier

Neural Network
Logistic Regression
Multinomial NB

Architecture and parameters
penalty =12
a=1.0

SVM c=1.0 kernel=rbf -~ = auto
Decision Tree criterion = entropy

kNN k=5

AdaBoost base_estimator = dtree

n_estimator = 4
n_estimator = 4
base_estimator = kNN
n_estimator = 4
max_samples = 0.5
max _features = 0.5

Random Forest

Bagging

All of our experiments test the performance of two differ-
ent implementations of SG classifier. The null hypothesis
is that there is no difference in accuracy. Each numeric en-
try in the tables represents accuracy of the classifier on a
corresponding data fold.

4.1. Base Classifiers: Labels as Probability
Distributions vs. Single Label

Ting et al. suggested in 1999 that Stacked Generalization
achieves better performance when the level-0 learners out-
put distribution of labels than when they simply output la-
bel predictions (Ting & Witten, 1999). To explore SGs in
general, we wanted to confirm this finding. In order to con-
firm this hypothesis, we trained two level-1 Logistic Re-
gression classifiers: L uses base classifiers that output la-
bels as probability distributions, and L’ uses base classifiers
that output single labels.

Table 2 and Table 3 summarize our results from the Adult
and Mushroom datasets, respectively.

We rejected the null hypothesis within the 95% confidence
interval on the Adult dataset. Unfortunately, our results on
the Mushroom data set were not informative, since both
have scored 1.0 on every fold. Nonetheless, this shows that
Stacked Generalization performs better when the base clas-
sifiers output labels as a probability distribution, compared

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

Table 2. Experiment 1: Adult Data Set

Table 4. Experiment 2: Adult Data Set

Fold Single Label Distributions Fold SG Classifier | Cross Validation
1 0.8170 0.8218 1 0.8218 0.8170
2 0.8159 0.8214 2 0.8214 0.8170
3 0.8159 0.8202 3 0.8202 0.8170
4 0.8170 0.8214 4 0.8214 0.8170
5 0.8170 0.8216 5 0.8216 0.8170
t-score / p—value | t-score: -22.2136 p-value: 0.0000 t-score / p—value | t-score: -15.3935 p-value: 0.0001

Table 3. Experiment 1: Mushroom Data Set

Table 5. Experiment 2: Mushroom Data Set

Fold Single Label | Distributions
1 1.0 1.0
2 1.0 1.0
3 1.0 1.0
4 1.0 1.0
5 1.0 1.0
t-score / p—value | t-score: N/A p-value: N/A

to just a single label. Under this conclusion, for the rest of
our experiments we trained our SG using base classifiers
that output labels as probability distributions.

We confirim Ting et al.’s claim that such a distribution is
more appropriate. Since probability distributions give in-
sight into the confidence of the base-learners about their
predictions, the generalizer is able to take into account
higher and lower levels of certainty when it is adjusting
weights.

However, we note that this accuracy comes at the cost of
runtime complexity. Because training on probability distri-
butions scales up the number of attributes that the general-
izer needs to learn, there is a problem in scaling up the fea-
ture space, especially for datasets containing a wide range
of labels. It is practically impossible to learn from large-
scale multi-class prediction domains within an acceptable
amount of time.

4.2. Stacked Generalization vs. Best Base Classifier

Since the goal of machine learning is to achieve the most
accurate predictions within the least amount of time, using
a Stacked Generalizer would only make sense if it indeed
outperforms the best of its base classifiers. In order to test
our hypothesis that SGs are indeed valuable, we compared
the performance of an SG classifier with the best cross-
validation performance of an individual base classifier.

Tabels 4 and 5 summarize our results from the Adult and
Mushroom datasets, respectively.

Again, we reject the null hypothesis within the 95% con-
fidence interval on the Adult dataset. Unfortunately, our
results on the Mushroom dataset were still not informative,

Fold SG Classifier | Cross Validation
1 1.0 1.0
2 1.0 1.0
3 1.0 1.0
4 1.0 1.0
5 1.0 1.0
t-score / p—value t-score: N/A p-value: N/A

since both have scored 1.0 on every fold. Nonetheless, this
shows that Stacked Generalization indeed performs better
than the best classifier’s cross-validation on every fold.

These results confirm the advantage of ensembles: that a
collective vote on the hypothesis is better than a single view
on the hypothesis. Each individual base classifier will err,
but the effect of their errors is offset by the correct pre-
dictions of other classifiers, especially if their errors are
uncorrelated. The aggregate opinion does not remove all
the effects of bias, variance, and noise; but ensembles are
certainly less susceptible compared to single models.

4.3. Stacked Generalization vs. Majority Vote

Since the goal of machine learning is to achieve the most
accurate predictions within the least amount of time, using
a Stacked Generalizer would only make sense if it indeed
outperforms the majority vote scheme, which performs
faster than training an additional L-1 generalizer model. In
order to test our hypothesis that SGs are indeed valuable,
we compared the performance of an SG classifier with the
performance of an ensemble that uses a simple majority
vote.

Tabels 6 and 7 summarize our results from the Adult and
Mushroom datasets, respectively.

We rejected the null hypothesis within the 95% confidence
interval on the Adult dataset. However, on the Mushroom
dataset it appears that the majority-vote scheme actually
performs nearly on-par with the Stacked Generalizer. This
is probably not an indication that the majority-vote scheme
is in general of equal performance to SGs, though; we rea-
soned that this is only because the Mushroom dataset is

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

Table 6. Experiment 3: Adult Data Set

Table 8. Experiment 4: Adult Data Set

Fold SG Classifier | Majority Vote Fold L-1 Logistic Regression | L-1 Neural Network
1 0.8150 0.7969 1 0.8150 0.7537
2 0.8030 0.7969 2 0.8030 0.7537
3 0.8030 0.7969 3 0.8030 0.7537
4 0.8030 0.7989 4 0.8030 0.7537
5 0.8140 0.7979 5 0.8140 0.7537
t-score / p—value | t-score: 3.4503 p-value: 0.0260 t-score / p—value t-score: -18.9980 p-value: 0.0000

Table 7. Experiment 3: Mushroom Data Set

Table 9. Experiment 4: Mushroom Data Set

Fold SG Classifier | Majority Vote Fold L-1 Logistic Regression | L-1 Neural Network
1 1.0 0.999 1 1.0 0.5187
2 1.0 0.999 2 1.0 0.5187
3 1.0 0.999 3 1.0 0.5187
4 1.0 0.999 4 1.0 0.5187
5 1.0 0.999 5 1.0 0.5187
t-score / p—value t-score: inf p-value: 0.000 t-score / p—value t-score: -inf p-value: 0.0000

quite simple and that just a few defining features can predict
whether a mushroom is poisonous or not, so it is extremely
unlikely that all of the base classifiers would collectively
misclassify a test point.

We concluded that while having a separate combining clas-
sifier indeed results in higher accuracy than having just a
majority voting scheme, for simpler datasets we recom-
mend just using the majority-vote scheme because it can
achieve nearly the same results with much less complexity.

4.4. Level-1 Learner: Linear or Non-linear?

The Linear Regression algorithm has typically been the
primary choice classifier to train Level-1 classifiers, since
empirically they seemed to outperform non-linear classi-
fiers such as Naive Bayes, Decision Trees, and K —nearest-
neighbors. However, although it would take more time for
them to train to approximate the same linear function as di-
rect linear methods, we wanted to give non-linear mappings
a shot. We hypothesized that Neural Networks might be
able to approximate linear functions, especially with their
rising popularity in modern machine learning research.

To test our hypothesis, we compared two SG classifiers:
one with a Neural Network as the Level-1 classifier, and
the other with a logistic regression classifier.

Tabels 8 and 9 summarize our results from the Adult and
Mushroom datasets, respectively.

The results were not what we theorized. Our results claim
that Logistic Regression is a better choice than Neural Net-
works for a Level-1 classifier, but we do not believe that
this is necessarily accurate. We believe that this can be ex-
plained by the fact that our experiments were limited and

inconclusive. Our choice of hyperparameters (number of
neurons, number of layers, activation function, and loss
function) was made without thorough grid search. More-
over, Neural Networks require an enormous amount of data
in order to perform well, and even our larger Adult dataset
was not large enough to fill enough of the hypothesis space.
Choosing the network topology is not as trivial as we had
made it, and neural networks require extensive data that our
datasets could not provide.

Although the Neural Network classifier performed worse
than the Logistic Regression control on both of our
datasets, we note that the neural network classifier seems
to do better on the larger Adult dataset than the smaller
Mushroom dataset. This supports our hypothesis that if we
only had more data, the Neural Network generalizer would
have performed better.

4.5. Stacked generalization vs. Bagging, Random
Forest and AdaBoost

Finally, we wanted to empirically compare Stacked Gen-
eralizers with the traditional Bagging, Random Forest, and
AdaBoost ensemble methods to see if they are more de-
serving in popularity.

In order to make a reasonable comparison, all ensemble
methods are applied with n_estimator set to 4. Tabels 10
and 11 summarize our results from the Adult and Mush-
room datasets, respectively.

From the tables above, we can see the results differ vastly
between a large data set and a small one.

For the adult data set, with 95% confidence interval, little
can be concluded about SG compared to Bagging, although

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

Table 10. Experiment 5: Adult Data Set

Fold | SG Classifier | Bagging RF AdaBoost
1 0.8230 0.8136 | 0.8323 0.8434
2 0.8225 0.8250 | 0.8328 0.8434
3 0.8230 0.7846 | 0.8290 0.8434
4 0.8234 0.8412 | 0.8308 0.8432
5 0.8230 0.8218 | 0.8374 0.8434

SG / Bagging 0.8151/0.4608

t/p SG/RF -6.5604 / 0.0028

SG / AdaBoost -119.2579 / 0.0000

Table 11. Experiment 5: Mushroom Data Set

Level-1 layer, compared to “horizontally” combining of
base learners by using a consistent voting scheme. Un-
like Bagging, SGs’ base learners train on the entirety of
the training dataset. Unlike Random Forests, SGs’ base
learners train on the entirety of the feature space. Unlike
AdaBoost, the learning process for the level-1 learner is
measuring the performance of base classifier over different
parts of the dataset.

4.6. Stacked generalization vs. Random forests

Random Forests can be seen as a special case of SG where
the base classifiers are Decision Trees with random features
and trained on subsampled data, while combining their pre-
dictions with a function that averages or outputs majority
vote. To test this aspect of difference-by-level-1, we com-
pare a random forest classifier with a SG classifier whose
base classifiers are decision stumps taken from an RF clas-
sifier’s trained estimators. To make sure that the compar-
ison is fair, we trained the Random Forests with the full
training data, whereas we only used the base training set to
train the second Random Forests and extracted its decision
stumps as base classifiers for our SG model.

Fold | SG Classifier | Bagging RF AdaBoost
1 1.0 1.0 1.0 0.9354
2 1.0 0.9994 1.0 0.9354
3 1.0 0.9982 | 0.9994 | 0.9354
4 1.0 1.0 1.0 0.9471
5 1.0 1.0 0.9994 | 0.9354

SG / Bagging 1.3720/0.2420

t/p SG /RF 1.6330/0.1778

SG / AdaBoost 26.6316 / 0.0000

SG has a more stable performance across folds; RF is better
than SG by a p—value of 0.0028; AdaBoost is significantly
better.

As for the mushroom data set, SG classifier gets a steady
1.0 on each fold, winning over all other ensemble methods—
although not significantly over Bagging and Random
Forests. The p—values tells us that we are only moder-
ately confident about SG’s advantage (about 76% and 82%,
respectively). But the ¢—score with AdaBoost gives high
confidence that SG outperforms AdaBoost on the mush-
room data set.

We suspect that Bagging, Random Forests, and AdaBoost
become sensitive to outliers when the training set is not
large enough. We concluded that on larger datasets, SG is
only roughly as good as Bagging; on smaller datasets SG
regularly achieves higher scores, while the others may be
subject to overfitting.

Like Bagging, Random Forests, and AdaBoost, Stacked
Generaliation is an ensemble method that aims to reduce
bias and variance by incorporating compiling viewpoints
on predictions. Like Bagging, SG also overfits on a portion
of the training data in order to reduce variance. Like Ran-
dom Forests, SG also trains on a set of weak learners. Like
AdaBoost, SG also requires a training process for learning
the weights of predictions from each of the base classifiers.

But unlike these three ensembles, Stacked Generaliza-
tion “vertically” combines viewpoints by training another

Table 12. Experiment 6: Adult Data Set

Fold SG Classifier | Random Forest
1 0.8342 0.8323
2 0.8342 0.8328
3 0.8374 0.8290
4 0.8374 0.8308
5 0.8184 0.8374
t-score / p—value | t-score: -0.0313 p-value: 0.0234

Table 13. Experiment 6: Mushroom Data Set

Fold SG Classifier | Random Forest
1 1.0 1.0
2 1.0 1.0
3 1.0 0.9994
4 1.0 1.0
5 1.0 0.9994
t-score / p—value | t-score: 1.6330 p-value: 0.1778

The p-values from both the Adult and Mushroom datasets
suggest that SG outperforms Random Forests, although the
evidence is stronger on the adult data set, since the scores
are quite similar on the mushroom one. These results show
that if Random Forests are trained over its base learners us-
ing a linear model instead of taking a weighted vote of the
probability estimate across the trees, then it would achieve
better performance. Our results demonstrate that Stacked
Generalization outperforms Random Forests even when us-
ing a homogenous set of base learners.

Stacked Generalization Ensembles: Comparing Stacked Generalization with Other Classification Models

5. Conclusions

Our empirical results confirm previous empirical findings,
and further suggest that Stacked Generalization performs
better than traditional ensemble methods when data is lim-
ited. From this, we remark that certain ensemble methods
could be easily turned into a Stack Generalization classi-
fier to achiev even higher performance, just by replacing
simple voting methods or other generalizing scheme with a
high-level classifier.

6. Future Work

Since our Experiment 4 was inconclusive due to the diffi-
culty in finding an optimal network topology and lack of
data, we hope to further explore the relationship between
network architecture and classifier performance. A sys-
tematic search of various hyperparameters needs to be per-
formed.

We are also interested in changing the Stacked Generaliza-
tion algorithm so that a complete retraining of the gener-
alizer is not necessary when new data or additional base
models are added. Currently, SG requires the generalizer
to deal with only a fixed input dimension, determined by
the number of base learners. As a result, in order to add
or remove new base classifiers to the ensemble, it is nec-
essary to retrain the generalizer. While the training set can
be modified quickly by adding or removing few features,
it might take a non-trivial amount of resource and time to
retrain the generalizer.

Finally, we note that it is possible to construct a “deep” SG
classifier consisting of more than one level of generalizer
stacks. This classifier will closely resemble a deep neural
network in topology, as the outputs of hypotheses H; are
fed into the next layer of “generalizing” hypothesis H; .
Of course, this will require complicated training set divi-
sion scheme and a layer-wise training phase. While this
method has the advantage of not requiring backpropaga-
tion, we expect this pseudonetwork to be either impracti-
cally slow or inaccurate. However, it might still be of some
value to experiment with the idea.

Acknowledgments

We would like to express gratitude for Professor Ameet
Soni for his guidance at every stage of this experiment.

References

Breiman, Leo. Stacked regressions. Machine Learning, 24
(1):49-64, July 1996. ISSN 0885-6125. doi: 10.1023/A:
1018046112532. URL http://dx.doi.org/10.
1023/A:1018046112532.

Dinakar, Karthik, Weinstein, Emily, Lieberman,
Henry, and Selman, Robert. Stacked generaliza-
tion learning to analyze teenage distress, 2014. URL
https://www.aaail.org/ocs/index.php/
ICWSM/ICWSM14/paper/view/8076/8108.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Malmasi, S. and Dras, M. Native Language Identification
using Stacked Generalization. ArXiv e-prints, March
2017.

Ozay, M. and Yarman Vural, F. T. A New Fuzzy Stacked
Generalization Technique and Analysis of its Perfor-
mance. ArXiv e-prints, April 2012.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Sill, J., Takacs, G., Mackey, L., and Lin, D. Feature-
Weighted Linear Stacking. ArXiv e-prints, November
2009.

Ting, K. M. and Witten, I. H. Issues in Stacked General-
ization. Journal of Artificial Intelligence Research, May
1999.

Wolpert, David H. Stacked generalization. Neural Net-
works, 5:241-259, 1992.

http://dx.doi.org/10.1023/A:1018046112532
http://dx.doi.org/10.1023/A:1018046112532
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8076/8108
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8076/8108
http://archive.ics.uci.edu/ml

