
A Machine Learning Approach to Predicting HIV Progression

Do June Min DMIN1@SWARTHMORE.EDU

Yang Yi YYI1@SWARTHMORE.EDU

Abstract
HIV is a worldwide epidemic that has caused
over 25 million deaths worldwide. Like many
viruses, its effects vary from individual to indi-
vidual and is largely determined by one’s genetic
underpinning. Given patient genomic data, we
propose utilizing bioinformatic techniques such
as multiple sequence alignment(MSA) and k-
mer to generate feature vectors which we can in-
put into machine learning algorithms to predict a
given patients outcome. This information will be
useful in determining which patients have a good
chance of recovery, which patients will proba-
bly never recover, and which borderline patients
would benefit the most from heightened monitor-
ing. Overall, our results show that performing an
msa and using minimum entropy to isolate fea-
ture vectors produces the most predictive model.

1. Introduction
HIV is not a one size fits all virus and previous work has
established that various genetic strains of the virus are cor-
related with virus severity. For any given case of HIV, the
nucleotide sequences that comprise that unique case con-
tains a wealth of information including whether or not the
patient can reasonably be expected to ultimately recover
from the virus. In an ideal world, doctors would be able to
accurately predict patient outcomes given only the virus’
genetic sequences and a few other pieces of information
such as a patient’s viral load and CD4 count at the begin-
ning of therapy.

This problem can be framed as a mapping; given a set of
features as input, we want to output the most likely out-
come. Framed this way, this problem seems well suited for
machine learning, but in order to successfully utilize ma-
chine learning classifiers, several challenges must be over-
come. First, we must find a way to convert the data into

CPSC 68 Bioinformatics Final Report Proceedings, Swarthmore
College, Fall 2014.

meaningful features; to do so, we decided to try two ap-
proaches: MSA and k-mer. Performing an MSA allowed us
to be sure that the columns between sequences were mean-
ingfully aligned which allowed us to use algorithms such
as minimum entropy to find potentially significant column
vectors to use as features. In the event that the data proved
unconducive to MSA, we also implemented k-mer which
does not require sequences to be aligned. From k = 3 to k
= 7, we utilized k-mer to obtain a feature vector that ob-
tained the counts of all unique substrands.

Finally, after successfully transforming the genomic data
into a feature vector, we input it into machine learning
classifiers, gauging each’s accuracy. We implemented six
unique classifiers (neural networks, decision trees, SVMs,
Naive Bayes, AdaBoost, and Random Forest). To better
analyze each classifier’s predictions, we computed several
analytical metrics: accuracy, precision, recall, F score, and
Mathew’s correlation coefficient.

Overall, we found that combining MSA with minimum en-
tropy produced the most effective feature vectors and that
using k-mer feature vectors did not enhance predictive ac-
curacy. Using this metrics, we also found that AdaBoost
was the most predictive machine learning classifier fol-
lowed closely by linear SVM. Lastly, due to imbalances
within our training data, we found metrics such as confu-
sion matrices to be much more insightful than traditional
accuracy.

2. Related Work
2.1. Computational Biology: HIV Protease

Recognizing that a genetic understanding of HIV will
greatly assist efforts in combating the disease, computa-
tional biologists have conducted many tests to test hypothe-
ses of how HIV-1 affects human proteins. Notably in 2015,
Rognvaldsson et al conducted a machine learning experi-
ment designed to classify HIV-1 protease profiles within
patients (within our data, this is the PR sequence). For
background, HIV-1 protease is short for retroviral aspartyl
protease (retropepsin) which is essential for the life-cycle
of HIV. Without effective HIV protease, the ability of HIV



Final Report

virions to replicate and infect additional cells is disrupted.
Thus, while not completely analogous to predicting patient
outcomes, their work is extremely correlated to ours as a
patients HIV-1 protease profile provides a strong indication
of whether or not they will eventually recover.

After analyzing how mutations to various sites within the
protein sequence affect HIV protease potency, Rognvalds-
son et al discovered that a linear SVM with standard or-
thogonal encoding is the best predictor across all data sets
(Rognvaldsson 2015). In our experiments, we hope to build
upon their work. Within their experiments they focused
heavily on solely training SVMs and compared them across
two online predictors, HIVcleave and PROSPER. Instead,
we aim to compare SVMs against a wider range of machine
learning classifiers including but not limited to neural net-
works, decision trees, and Naive Bayes. We also aim to di-
vide the data set into alternative features from that of their
paper by utilizing different processing techniques such as
MSA and k-mer.

2.2. Biological Indicators

In addition to building a robust model, we hope to produce
helpful references that can explain whether our model’s
predictive power is biologically sound. Biologists Lang-
ford et al published a much more analytical paper on HIV
progression in patients, placing less emphasis on algo-
rithms and more on biologically observable metrics such
as CD4 cell count, HIV-RNA, and host genetics (Lang-
ford 2007). Later, Poorolajal et al released a study which
examined 2,473 HIV-infected patients and examined dis-
ease progression throughout a 1, 5, and 10-year period.
Their findings complemented that of the Langford study
and showed that in addition to non-modifiable predictors
such as age and sex, there was a significant association
with decreased levels of CD4 count (P = 0.001) (Pooro-
lajai 2015). Their work presents an alternative approach
to that of that of Rognvaldsson’s- that HIV progression can
also be predicted by isolating causal factors and performing
regression.

2.3. Hybrid Approaches

Korenromp et al measured fluctuations on chronically in-
fected patients and estimated that 55 percent of population-
level variation in RNA, and 75 percent of variation in CD4
were significant in quantifying risk levels for any given pa-
tient (Korenromp 2009). The results show that sequence
analysis can definitely yield predictive features; however,
because these mutations behave different under various
conditions, it is challenging to find a consistent pattern
within the noise. Here, computation approaches can play
a pivotal role. Carvajal-Rodrguez believes that computa-
tional tools are the cheapest and most efficient way to an-

alyze individual genomic data which can then be used to
tailor treatments to individual patients (Carvajal-Rodrguez
2007). His study demonstrated that trained properly, com-
putational tools can not only successfully identify rele-
vant mutations, but also through a prediction system, rec-
ommend drugs that the mutations are most susceptible to
(Carvajal-Rodrguez 2007).

At times, biology and bioinformatics can appear disjoint
as biologists generally prefer observable phenomenon over
black box machine learning models. However, both view-
points contain merit and eschewing one compromises the
potential value of results. Within our project, we hope to
do the same by providing the biological intuition behind
our algorithmic work whenever possible, such as by ana-
lyzing whether our decision tree splits occur at sites that
are traditionally associated with HIV mutations. In doing
so, we aspire to produce results that members of both fields
would be willing to adopt.

3. Methodology
Our program contains various methods, each of which falls
into one of three categories: data processing, classification,
or analysis.

3.1. Data Processing: Initial Features

For training, we received a data set consisting of approx-
imately 1000 cases and for testing, a data set containing
approximately 750 more. Each entry contained four pieces
of patient data: their reverse transcriptase (RT) sequence,
their, protease (PR) sequence, their viral load, and their
CD4 count at the beginning of therapy. A few data en-
tries were incomplete; in this case, we disregarded them
completely.

The testing set also did not contain ground truth labels, as
they were intended for a competition entry. In this case, we
used them to perform the MSA and nothing more. In the
end, we were left with a set of 920 complete data points in
this project taken from the training set, which we split 4:1
for validation.

Finally, viral load and CD4 count were already discretized
variables and thus required no processing; we simply added
them as features in their current state. Mainly, our task was
to refine the RT and PR sequences as they were both far too
long to feasibly use.

3.2. Data Processing: MSA

Not only can nucleotide sequences be hundreds of char-
acters long, many sections of the sequences are homoge-
neous amongst patients who recover and those who dont.
However, we cannot just start by eliminating columns from



Final Report

the training data as the presence of gaps disjoints the inter-
patient sequence alignments and introduces a litany of off-
set errors. Somewhere along the sequence, gaps may cause
every base in one sequence to differ from those in another
when in reality, the ordering and bases are identical sans
gaps.

This forms the crux of why we performed an MSA, which
we ran on both training and testing cases; we wanted the
bases within a given column to be significant relative to
other bases in similar columns. We could then perform
minimum entropy to identify columns where the patients
cases showed the most genetic disparities and be more con-
fident that these disparities were biologically significant,
not products of random offset.

To perform the MSA, we utilized ClustalW, an open library
tool that takes in a file of genomic sequences and returns
an updated file of sequences with the columns properly
aligned. After obtaining the result, we ran minimum en-
tropy on each of the result columns and ranked them based
on genetic disparity. The entropy of an aligned column is
defined as follows:

E(X) = −
k∑

i=1

P (xi) logP (xi)

where X is an alignment of a column with constituents
x1, x2, ..., xk, and P (xi) is defined as the number of char-
acters xi divided by the length of the column. Thus, an ab-
solutely homogeneous column will have entropy 0, while a
column with 1:1 split will have entropy 1.

We then took only the top forty ranked columns and ap-
pended them to our feature vector; this greatly reduced the
amount of features we need to consider relative to using
the entire genetic sequence and allowed us to disregard ho-
mogenous columns that were unlikely to enhance accuracy.
Doing so also made our feature vector much less suscepti-
ble to the curse of dimensionality, which was a significant
concern given that we had less than one thousand training
cases.

3.3. Data Processing: k-mer

However, recognizing that MSA has its shortcomings, such
as the fact that whenever we obtain a new case, we need
to re-align the sequences (and hence may change the sites
with the most entropy), we decided to also adopt an ap-
proach that did not require any alignment, k-mer. k-mer
works by taking in a sequence, and a length, k, as input,
and then returns a count of all unique sub-strands of length
k. For example, if the strand was ATCG and k = 1, then
k-mer would return [A: 1, T: 1, C:1, G:1]. We then trans-
formed this output into one large feature vector by creating

a dictionary which maps each index within the array to a
length k substrand, and where the value contained in that
index represents the number of times the substrand appears.
Then, a machine learning algorithm could naturally parse
out which indices contained values that were significant,
which we could then lookup in our dictionary to identify
the associated nucleotide sequences. Finally, as previously
mentioned, since k-mer only operates within the context of
an individual sequence, we do not have to deal with any
issues related to alignment.

To implement k-mer, we installed k-mer, an online k-mer
script that takes in a sequence and value k as input and out-
puts all subsequences of length k as well as their frequency
count. After running the script, we obtained the top 20 most
frequent 7-mers for each sequence and converted them into
features by letting the subsequence represent the dimension
and the count represent the value. We then inserted these
features into our aggregate feature vector which contains
all the other features we obtained from the data and MSA.

3.4. Data Processing: Data Augmentation

Finally, we realized that the training set was not representa-
tive of the test set as within the training set there are many
more negative examples than positive ones. The test set, on
the other hand, appears much more evenly split. Concerned
that our classifiers might attempt to take advantage of this
imbalance and opt to gain accuracy by uniformly out-
putting negative examples, we experimented with weight-
ing positive examples with integer weights w = 2 and
w = 3; that is, while processing the data, we added each
positive example to the training data w times as opposed
to once. We then performed all of the aforementioned data
processing, only this time with the newly augmented data
set.

3.5. Data Processing: Parameters

In using the data processing and augmentation methods we
have mentioned above, we have chosen the following pa-
rameters shown in Table 1.

Table 1. Data augmentation Parameters
Data Processing Method Parameters

Weighting w=3
MSA Number of Columns = 40,

Measure: Minimum Entropy
k-mer counting k=7,

Number of k-mers: 20

To deal with the imbalance between negative and positive
examples, we sampled each positive data in the training
set w = 3 times. With respect to minimum entropy, we
chose to use the top 40 columns with regard to variation.



Final Report

Finally, we settled on doing 7-mer counting, with the 20
most frequent 7-words considered as features.

As a result, each data point is transformed from a 4-vector
to a 122-vector.

3.6. Classification

In total, we utilized 6 classifiers: neural networks, decision
trees, SVMs, Naive Bayes, AdaBoost, and Random For-
est. For brevity, in this section we will only explain the
two classifiers that proved most instrumental to our results:
SVM and AdaBoost. An additional table explaining the
rest within the context of our study can be found in Ap-
pendix Figure B.

3.7. Classification: SVMs

Support vector machines were of particular interst, as
Rognvaldsson et al reported that SVM with linear ker-
nel perfomed best (Rognvaldsson 2015). The idea be-
hind SVMs can be sumamrized as transforming data vec-
tors from higher dimensions to find decision boundaries
that might not exists in the original dimensions. Although
the computation required to perform this transformation is
often costly, a technique called kernel trick allows us to
quickly and efficiently compute the distance between two
vectors in the desired space, rendering this method effec-
tive. Given that our feature contains 122 dimensions, we
believe that it dimension based transformations could po-
tentially be utilized to great effect. We eventually applied
three separate mappings to the original data: linear, radial
basis (rbf), and sigmoid.

3.8. Classification: AdaBoost

AdaBoost, short for adaptive boosting, is one of the many
machine learning algorithms we imported from Sklearn.
The issue with weak classifiers is that they can often only
learn rules of thumbs that make them more effective pre-
dictors than random guess, but are not nuanced enough to
boost them into the upper echelons of predictive accuracy.
AdaBoost strives to boost their capabilities by weighting
training examples, prioritizing harder to train cases over
easier ones. This process can be expressed as the following
algorithm:

This weighting is particularly useful for our task because
the crux of our model’s predictive capability will lie in its
ability to classify patients with unique or borderline fea-
tures. Some patients will be extremely easy to classify and
can probably be classified with a very high degree of accu-
racy based on one feature alone (i.e. patients with signif-
icantly higher viral loads are almost guaranteed to experi-
ence HIV progression). It is the outlier cases in which we
must incorporate multiple more dimensions such as those

Given training data (x1, y1), .., (xm, ym)
y1 ∈ {−1,+1} xi ∈ X is the object or instance, yi is the
label.
For t = 1, .., T

create distribution Dt on {1, ...,m}
select weak classifier with smallest error εt on Dt.

εt = PrDt
[ht(xi) 6= yi]

ht : X → {−1,+1}
output single classifier Hf inal(x).

pertaining to genetic sequences, cases that plague most of
our weak classifiers and where AdaBoost can provide the
most impact. By weighting these cases, we can find more
specific rules that don’t necessarily apply to the entire data
set, but are particularly predictive in borderline cases. Be-
cause we already have two dimensions, CD4 cell count and
viral load, that are excellent predictors of easy-to-classify
cases, it is reasonable to assume that by performing such
weighting, our classifier will not unlearn many previous
cases.

3.9. Classification: Parameters

In addition to SVMs and AdaBoost, the parameters for the
rest of classifiers can be found below. As previously men-
tioned, if interested in our reasoning for using each algo-
rithm, see Appendix Figure B.

Table 2. Algorithm Parameters
Algorithms Parameters
Gauss NB Default Parameters
Multi NB Default Parameters

Decision Tree Default Parameters
Neural Network Architecture and training parameters

included in Appendix Figure C
AdaBoost 100 base learners (decision trees)

Random Forest 100 base learners (decision trees)

3.10. Analysis: Cross validation

To evaluate the performance of our algorithms, we split our
training data set into a training and a test set, using a 4:1 ra-
tio respectively. This allows us to train our classifiers and
measure their performance using ”novel” data, mitigating
the potential of overfitting. It should also be noted that in
the training phase, the ratio of training:testing set is differ-
ent since the weighting of positive examples is only applied
to the training set. This reduces the probability that our
training set correlates with our testing set and increases our
chances of obtaining more informative results.



Final Report

3.11. Analysis: Confusion Matrices

Although we would like to output a soft vector that prob-
abilistically corresponds to various outcomes of HIV pro-
gression, due to the nature of our data set, our outputs are
essentially binary (we only know whether the virus either
regressed or progressed). Therefore, the majority of our
analysis focuses on binary statistics such as precision and
recall. Calculating precision and recall required obtaining
rates of true and false positives/negatives, which are con-
tained in a confusion matrix in the manner shown below.

Table 3. The composition of a confusion matrix
Truth Prediction Negative Positive

Negative True Negative False Positive
Positive False Negative True Positive

For brevity, we refer to them as TP, TN, FP, FN.

Although confusion matrices do not explicitly compute
precision and recall, one can easily obtain them using the
following equation.

precision =
TP

TP + FP

recall =
TP

TP + FN

3.12. Analysis: F-Score

We then utilized precision and recall to obtain an F-score,
which provides us with a more holistic alternative to ac-
curacy. The F-Measure is computed by taking a weighted
average of both precision and recall, and takes on a value
between 0 and 1. Mathematically,

F-score = 2× precision× recall
precision = recall

Specifically, the precision component of the F-Score makes
it an interesting supplement to accuracy. Accuracy mea-
sures how close one can get to the true value while preci-
sion measures the ability to be correct when labeling a pos-
itive. This is important particularly in unbalanced data sets
such as ours when positives are less common than nega-
tives and/or a false positive needs to be avoided. In the case
of HIV progression, a false positive would be particularly
damaging as it would classify a patient whose condition
is expected to worsen as one who is expected to recover,
potentially dissuading the patient from pursuing necessary
treatment. Thus, while accuracy is important, other traits
such as precision should also be prioritized.

3.13. Analysis: MCC

Finally, we augmented the F-score by calculating Mathews
Correlation Coefficient which differs from F-score in that it
accounts for true negatives, which makes MCC more robust
to imbalances in data. MCC takes on values between -1 and
+1 where +1 represents perfect prediction and -1 represents
total inaccuracy. It is calculated as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

4. Results
Table 4 displays the evaluative results for each classifier.
For each metric, the cell(classifier) with highest value is
emboldened. Table 4 excludes other helpful metrics such as
confusion matrices and decision trees which are elaborated
upon in more detail in 4.2 and 4.3.

Table 4. Evaluation table of classification results using different
evaluation metrics

Accuracy Precision Recall F-score MCC
Gauss NB 0.739 0.410 0.605 0.48 0.333
Multi NB 0.625 0.298 0.605 0.4 0.193

SVM Linear 0.739 0.4 0.526 0.454 0.291
SVM RBF 0.798 0.6 0.07 0.139 0.162

SVM Sigmoid 0.793 1.0 0.0 0.0 0.0
Decision Tree 0.717 0.325 0.342 0.333 0.154

Neural Network 0.793 1.0 0.0 0.0 0.0
AdaBoost 0.798 0.510 0.631 0.564 0.440

Randm Forest 0.815 0.583 0.368 0.451 0.360

4.1. Results: Evaluation Metrics

Note that no one classifier holds the best performance
across all evaluation metrics. For instance, Random For-
est method ranked first in terms of accuracy, but its recall
is one of the lowest. This means that in analyzing the per-
formance of the algorithms, in addition to accuracy, it is
crucial that researchers consider which additional metrics
are most relevant to the problem at hand.

For example, in our study, the data set provided is unbal-
anced. Likewise in the real world, positive examples(in this
case, recovery from HIV) are rare. Thus, always outputting
a ”No”(prediction(x) = 0, ∀x) will actually result in some-
what high accuracy. For instance, if there are 8 Nos and 2
Yeses, the accuracy is 80%. However, this accuracy is not
a good measure of the performance of the algorithm since
the algorithm does not detect any true positive case.

In an unbalanced data set, it would help to think about how
many of the few positive cases are properly detected. This
is the idea behind recall, as shown in the equation provided



Final Report

earlier in this report. Thus, it makes sense to treat recall, F-
score and MCC more importantly than accuracy and preci-
sion. Otherwise we would consider the unweighted neural
network classifier, which only outputs positive predictions,
the third best classifier.

Therefore, we conclude that recall is the most useful metric
to use since it captures how much of the total positive ex-
amples a classifier has correctly predicted. However, note
that recall also could be easily improved to 1.0 if a classifier
uniformly predicts 1. Therefore, while keeping the rank of
precision values in mind, it is necessary that we somehow
combine the various statistics we have into a single, com-
parable value (F-score and MCC). Overall, AdaBoost was
observed to perform the best in measures of recall, F-score
and MCC, which is why we consider AdaBoost as the best
classifier, despite it not being the most accurate.

4.2. Results: Confusion Matrices

In addition, analyzing the confusing matrix yielded helpful
insights as to how our classifiers were getting predictions
right. For instance, the confusion matrix for neural net-
works confirmed our intuition that due to the heavy imbal-
ance of progression cases in our training set, certain clas-
sifiers attempted to gain accuracy by classifying all cases
under one label (Figure 1). Each answer turned out to ei-
ther be a true or false positive meaning that the classifer
only output one answer (positive).

Figure 1. Normalized Confusion Matrix of Neutral Network Clas-
sification Result

From this, we could also see how well our data processing
improved our results. After performing data augmentation
and weighting regression cases to balance our training set,
the same neural network algorithm produced the following
confusion matrix (Figure 2).

Figure 2. Normalized Confusion Matrix of Decision Tree Classi-
fication Result

While the overall accuracy was slightly less in this case,
we feel much more confident in the latter neural network’s
ability to generalize to novel data. This is a helpful exam-
ple as to why accuracy is not the end all be all. We then
analyzed the matrix of our best performer, AdaBoost (Fig-
ure 3). Based on the matrix, we conclude the best classi-
fiers such as AdaBoost were able to discern relevant pat-
terns within the data noise, as the composition of false neg-
atives and false positives was much more balanced than that
of Figure 2 which suggests that it is not overcompensating
to accommodate the training set. It also suggests that Ad-
aBoost discovered certain rules of thumb that could be used
to methodically determine outcomes. Despite this, we still
feel that some aspect of the training set skew is nonetheless
present as the prevalence of false negatives relative to false
positives is still higher than we’d like it to be.

Figure 3. Normalized Confusion Matrix of AdaBoost Classifica-
tion Result



Final Report

4.3. Results: Decision Trees

Finally, we also wanted to see if we could produce results
of biological significance. One algorithm that provides a
happy medium between both algorithmic and biological ap-
proaches is decision trees, because we can retroactively an-
alyze the tree splits to gain a clearer sense of its decision
making. The entire decision tree is too large to feasibly
reproduce, but does contains interesting splits, the most in-
teresting being the two lefthand splits starting at the root (a
larger subtree is provided for reference in Appendix Figure
C).

The first split occurred based on the patients viral load
(HIV virus particles in a milliliter of your blood). That pa-
tients with a high viral load or in other words, severe cases
of HIV, were unlikely to recover makes intuitive sense and
we were encouraged that the machine recognized and pri-
oritized this. This finding is consistent with the Langford
et al paper which found strong correlation between patient
diagnostics such as CD4 and viral count and overall HIV
progression.

After splitting on viral load, the decision tree split on fea-
ture index 45, which corresponded to column 187 in the PR
sequence. We were encouraged to see that for certain bases,
after just the second split, the tree could make a unanimous
decision. To verify this, we consulted our MSA and found
that indeed, all patients who had certain bases within col-
umn 187 did not recover.

However, as we progress down the tree, the biological sig-
nificance of our splits become much less clearly defined.
Due to time constraints, we were unable to consult with
external biological experts, and mainly relied on data we
already had i.e. our MSA and k-mer outputs to verify sig-
nificance. However, even if we cannot verify biological sig-
nificance, the splits still gave us interesting hints on how we
might improve future results. For example, after splitting
on column 187 of the MSA, the next split on the left hand
side was index 27, which corresponds to a k-mer sequence.
While we are unsure about the subsequence’s genetic ram-
ifications, it provides us insight that the most frequent 7-
mers may not be the most relevant as index 27 was the 28th

most frequent 7-mer. In the future, we might want to in-
corporate least frequent 7-mers as well as random 7-mers
as feature vectors; based on the tree splits, pure frequency
does not appear to highly predictive.

4.4. Additional Remarks

We were not surprised to see linear SVMs perform rela-
tively well as prior work by Rognvaldsson et al demon-
strated that linear SVMs were the best predictor relative
to other bioinformatic tools. However, unlike Rognvalds-
son et al, we found that AdaBoost, not linear SVMs, were
the overall best performer. We are curious if AdaBoost
would also work just as effectively on the data set utilized
by Rognvaldsson et al. and see this as a logical future point
of study.

In addition, our results support the idea that there are sev-
eral key sites within the HIV genomic sequence that influ-
ence the virus’ ability to progress. The splits from our de-
cision tree show that in certain cases, patient outcome can
be determined by as few factors as viral load and the base
within one site, and with 100 percent accuracy (at least with
respect to our training set). The presence of certain subse-
quences also appears to be correlated with severity, though
it is not an extremely strong proxy, evidenced by how our
machine learning algorithms accounted for k-mer features.

Finally, our results from performing data augmentation and
weighting remission cases lend credence to the fact that our
training set is improperly balanced. This makes it difficult
to attribute mistakes to deficiencies within our methods as
opposed to deficiencies within the data set. Quick analysis
of the confusion matrix pre and post data augmentation for
neural networks and even effective classifiers such as Ad-
aBoost clearly show that our classifiers were compensating
for the skew by weighting towards false negatives when un-
sure. We believe that further testing on more unbiased data
is necessary before a definitive conclusion on each classi-
fier’s effectiveness can be reached.

5. Conclusions & Future Directions
We find that machine learning algorithms definitely have
the potential to serve as robust HIV diagnostic tools. Even
weak classifiers have demonstrated the ability to recognize
relevant patterns within the noise and improvements upon
weak classifiers such as AdaBoost have shown particular
improvement. That being said, there is still a great deal of
ground left to cover as even the best algorithm could only
accurately diagnose four out of every five cases, a terrible
percentage by modern diagnostic standards. However, be-
ing that our study only spanned several weeks, it is reason-
able to assume that even utilizing only our current methods,
we can expect better results given more time to adjust pa-



Final Report

rameters, and better tailor the training data.

There are several improvements that we believe could lead
to more robust results. First, methods such as our deci-
sion trees have shown that the most frequent 7-mers may
not necessarily be the most predictive subsequences. It is
not without the realm of the possibility that the most pre-
dictive subsequences are among the least common or even
tucked away somewhere in the middle. It would be inter-
esting to run versions utilizing k-mer where we probabilis-
tically choose which 7-mers to use as features, as opposed
to only choosing the most frequent twenty.

In addition, we conducted our MSA using both the training
data and test data in an effort to create meaningfully aligned
columns. However, when performing minimum entropy,
we excluded the test set that we aligned since we did not
have answers for the test set. We are concerned that be-
cause the training set is heavily imbalanced while the test
set is not, given that they are both relatively equal in size,
the MSA is not as optimal as it could be. In our opinion,
it would be better to perform an original MSA on just the
training set and then perform a new MSA every time we get
a new test case. Over time, this might shift the minimum
entropy columns, so we would have to implement more dy-
namical analytic tools so our program still picks the correct
columns.

Furthermore, a great deal of the training set contained sym-
bols that were defined probabilistically, such as Y, which
meant that it was either C or T. Because there isn’t a great
way to discretize nucleotide bases, we ended up assigning
each base a unique integer, which made our base dictionary
quite large. We definitely believe that our results would im-
proved if we could ascertain which character these proba-
bilistic bases were representing. At the very least, it would
be helpful to consult with experts to determine the relative
likelihood of each substitution i.e. does Y mean that it is
C and T both occur 50 percent of the time or is it a 90/10
split?

Moreover, we would be interested in seeing if ensemble
methods such as boosting could enhance our results. Pre-
vious empirical literature in other fields has demonstrated
that certain classifiers may be more adept at classifying dif-
ferent subsets of data and that weighting can utilized to
grant select classifiers more credence in various cases. We
assumed that all classifiers were uniform in their ability to
classify each individual case and similar to AdaBoost, our
results may benefit if we partition the data into clusters,
test classifier performance amongst the different clusters,
and then choose the best classifier for each cluster.

Finally, we would be interested in performing our experi-
ment given access to more features related to the patient.
As many related works show, in addition to viral genetics,

patient genetics such as sex and age also influence viral
progression. We are concerned there may potentially be a
performance bottleneck with access to only the patient’s
viral sequence as the same mutation may affect patients
across different demographics differently.

6. Appendix
Figure A: Classifier Overview (excluding SVMs and Ad-
aBoost which were mentioned earlier)

• Naive Bayes: Naive Bayes starts with a prior and up-
dates given new information. This is particularly suit-
able to our experiment as each feature represents new
data that the machine can use to update it’s classifica-
tion probabilities.

• Decision Tree: Decision trees classify by splitting
across each feature. Visualizing the splits helped us
identify which features were the most relevant.

• Neural Network: Neural networks are epitomized by
their deep learning capacity; it is usually expected that
a sufficiently capable neural network will learn differ-
ent levels of representations of the data, and use such
abstractions to ”reason” about which classification is
best. Thus, researchers might use neural networks in
the hopes that it might be able to capture various long-
term dependencies and higher-level structures arising
from neural networks.

• Random Forest: Random forest works by sampling
subsets of the data to train many iterations of a given
classifier (in this case decision trees). Although there
is no one algorithm that excels at all problems, ensem-
ble methods like random forest are generally improve
upon weak classifier results. In theory, it is expected
that combining predictions from multiple weak classi-
fiers will reduce overfitting.



Final Report

Figure B: Neural network Parameters and Architecture

The following figure contains a summary of our neural net-
work’s architecture and parameters.

The first two hidden layers contain 32 nodes each and
utilize a relu activation function(rectifier linear unit).
Dropouts of both 0.2 and 0.5 are implemented in an effort
to reduce overfitting and achieve the effects of ensemble
learning. The output layer converts the soft output into ei-
ther 0 or 1 by taking the soft max of two values in the output
vector. For a visual reference, see below:

Link to the git repository containing the png file describing
the architecture of the network

Figure C: This is a larger subtree picture of decision trees
that can be found in the google doc

Acknowledgments
We would like to thank Professor Ameet Soni, who has as-
sisted and provided guidance throughout all facets of this
project, from data collection to algorithm selection. We

would also like to thank Kaggle for gathering and assem-
bling the HIV progression data.

References
Carvajal-Rodriguez. The importance of bio-computational

tools for predicting hiv drug resistance. Recent Pat DNA
Gene Seq., 2007.

Hendriks, JC, Medley, GF, Heisterkamp, SH, and et al.
Short-term predictions of hiv prevalence and aids inci-
dence. Epidemiology and Infection, 1992.

Kleinberg, Jon, Ludwig, Jens, Mullainathan, Sendhil, and
Obermeyer, Ziad. Prediction policy problems. Am Econ
Rev ., 2015.

Korenromp, E., Williams, B., Schmid, G., and Dye, C.
Clinical prognostic value of rna viral load and cd4 cell
counts during untreated hiv-1 infectiona quantitative re-
view. PLOS, 2009.

Langford, SE, Ananworanich, J, and Cooper, DA. Predic-
tors of disease progression in hiv infection: a review.
AIDS Res Ther., 2007.

Poorolajal, J, Molaeipoor, L, Mohraz, M, Mahjub, M,
Ardekani, MT, Mirzapour, P, and Golchehregan, H. Pre-
dictors of progression to aids and mortality post-hiv in-
fection: a long-term retrospective cohort study. AIDS
Care, 2015.

Rgnvaldsson, Thorsteinn, You, Liwen, and Garwicz,
Daniel. State of the art prediction of hiv-1 protease
cleavage sites. Bioinformatics, 2015.

Sajda, Paul. Machine learning for detection and diagnosis
of disease. The Annual Review of Biomedical Engineer-
ing, 2006.

Shankaracharya, Odedra, Devang, Samanta, Subir, , and
Vidyarthi, Ambarish S. Computational intelligence in
early diabetes diagnosis: A review. The Review of Dia-
betic Studies, 2010.

Statnikov, Alexander, Aliferis, Constantin F., Tsamardinos,
Ioannis, Hardin, Douglas, and Levy, Shawn. A compre-
hensive evaluation of multicategory classification meth-
ods for microarray gene expression cancer diagnosis.
Bioinformatics, 2004.

https://github.swarthmore.edu/raw/CS68-S17/Project-yyi1-dmin1/master/paper/figures/model.png?token=AAACAnYYEZG199QRLzRdI_LFH4tWYNPZks5ZDqR6wA%3D%3D
https://github.swarthmore.edu/raw/CS68-S17/Project-yyi1-dmin1/master/paper/figures/model.png?token=AAACAnYYEZG199QRLzRdI_LFH4tWYNPZks5ZDqR6wA%3D%3D

