CS87 Project Report: Adaptive Routing For DHT's

Do June Min, Zheyuan Ryan Shi, Yu Jian Wu
Computer Science Department, Swarthmore College, Swarthmore, PA 19081
{dminl, zshil, ywul }@swarthmore.edu

July 19, 2019

Abstract

The Distributed Hash Table (DHT) has seen
great theoretical progress and wide applications
in practice, such as peer-to-peer file sharing, con-
tent delivery network, and distributed caching.
In practice, nodes in a DHT often have differ-
ent computational capacity. This heterogeneity
is dynamic due to the nodes being non-dedicated
resources and the absence of a centralized sched-
uler. To address these issues, we study the rout-
ing algorithm in Kademlia, the most widely used
DHT. We make the following contributions. (i)
Complement to the XOR metric in Kademlia,
we propose a new metric on the network topol-
ogy which incorporates real-time load and la-
tency. Hence the heterogeneity of the nodes are
accounted for. (ii) We devise an efficient mech-
anism to measure the computing load on other
nodes in the DHT, which addresses the dynamic
nature of the capacity. (iii) We perform exten-
sive experiments to demonstrate the merit of our
enhanced routing algorithm in practice.

1 Introduction

A Distributed Hash Table (DHT) provides
(key, value) storage and look-up functions in a
distributed manner. Research efforts in DHT
have led to successful applications in various
domains, ranging from file sharing [12, 2] and
Domain Name Service [I3], to Content Deliv-
ery Network [4] and instant messaging commu-
nication [11]. In a DHT, all participating users

(nodes) collectively maintains a hash table of
data in the form of (key, value) pairs. A key
component of a DHT system is the routing al-
gorithm during the loop-up, which directly im-
pacts the DHT’s efficienty. Such algorithms in
existing DHT models typically traverse through
O(log n) nodes, where n denotes the total num-
ber of nodes in the system. While such complex-
ity is decent in theory, these routing algorithms
ignore the heterogeneous and dynamic nature of
the system, which renders the supposedly opti-
mal route suboptimal in practice. For example,
if a DHT has a few Intel Pentium 4 nodes with
the rest being Intel Core i7 nodes, it may not be
ideal to route much traffic through the Pentium 4
ones. Such capacity difference can be dynamic.
Because of the decentralized nature, DHT has
little control over the other processes running on
its nodes. If some nodes in the DHT are training
some neural networks, avoiding them temporarily
is reasonable. Such issues are common in prac-
tice, and they call for a routing protocol which is
adaptive to real-time node capacity. In the next
section, we detail how existing work does not ad-
equately address this problem. In what follows
we outline our approach to fill the gap.

Adaptive routing protocol Our solution is
based on Kademlia [10], the most widely used
DHT model in practice. In Kademlia, the dis-
tance between two nodes is measured by the
XOR value of their node IDs. As a result, the
routing protocol is a greedy algorithm based on
this distance. To incorporate real-time capacity
information, we propose a new distance which

is a weighted average of the XOR distance, the
destination’s idle CPU power, and the destina-
tion’s idle memory capacity. Our framework is
general enough such that additional information
or different functional form of the distance can
be easily accomodated.

Real-time load information The adaptive
routing protocol as described above requires each
node know the load information of some other
nodes. We devise an efficient mechanism where
each node regularly logs its capacity and send it
to other nodes upon request. This mechanism is
integrated into the general DHT framework and
thus brings little overhead.

Simulation We evaluate our ideas using two
numerical simulations. First, we measure the
performance of DHT look-up using our adaptive
routing protocol in Kademlia. We also carried
out conceptual evaluation on a large, virtual,
DHT. In both experiments, we analyze the re-
sults and provide the rationale of different out-
comes.

2 Related Work

Distributed hash tables provide a way to ac-
cess data distributed over multiple nodes inside a
network [19]. Many DHT models have been pro-
posed, with some notable ones being Chord [I§],
Pastry [16], Tapestry [21I], and Kademlia [10].
All of them provides a loop-up routing algo-
rithm which traverses only O(logn) nodes as-
suming there are n nodes in the DHT. However,
such guarantee alone is inadequate for DHT in
practice. For example, an important task that
must be addressed in a practical DHT system is
minimizing the impact of newly joining/quitting
nodes. To achieve this, structure-based hash-
ing methods impose a topological structure on
the nodes, such as rings [I8], cubes [I4], or
trees [16, 21, (10]. These structures introduce
the concept of distance between different nodes,
which then can be used to partition the keyspace,
allowing for efficient look-ups. This look-up
would amount to a linear search of the node-

space. However, finger tables reduce the com-
plexity of look-ups to O(logn) by providing a
way for search queries to hop between nodes that
are far away from each other.

The focus of our paper is on the improvement
of the routing algorithm. Ideally, the routing
in DHT should avoid creating routing hot spots,
i.e. uneven traffic across the nodes [I5]. Further-
more, in the actual deployment of DHT, nodes
have different capacity in dealing with routing
and queries [I7]. A routing protocol which ig-
nores this can exacerbate the hot spot problem
and compromise the overall performance.

Since the advent of the aforementioned DHT
models, a wealth of literature has focused on
this issue. Zhang et al. [20] incorporates the un-
derlying network latency into the routing pro-
Other works consider the latency inside
each node, which is also the problem we study.
Cuevas et al. [3] propose a simple modification to
the Chord’s routing protocol, which significantly
alleviates the hot spot problem, yet their analy-
sis is mostly about homogeneous nodes. Godfrey
and Stoica [5] and Hong et al. [6] improves the
routing to take advantage of node heterogene-
ity, yet they assume a static network. In many
scenarios, the nodes in a DHT may be frequently
running other tasks, and thus their capacities are
changing in real time. The protocols in [5, 6] do
not scale well to real-time application.

Specific to the Kademlia DHT, there have also
been attempts to address the heterogeneity of
nodes [I, 9], but these approaches do not gener-
alize to a dynamic environment. Kadobayashi [8]
proposes an approach similar to ours: assign a
weight to each node to represent capacity. The
weight can be sent as part of the communication
protocol and thus this approach can address the
dynamic capacity. However, their method and
experiments have two limitations. First, the se-
lection of k neighbors is the same as the origi-
nal Kademlia algorithm, and the weight is only
taken into account in the subsequent « selection
problem. Compared to ours, their protocol may
miss some optimal routes because they are dis-

CESS.

Kademlia DHT

et ot Vet et

Nodes

Figure 1: Graphical Representation of System

carded in the first step. Second, in their experi-
ments, weights are of discrete values, which lim-
its the expressivity.

Jiang et al’s work at Huawei [7] is similar to
our project in that it relies on using additional
information stored in finger tables which can be
updated efficiently in real-time. However, their
system focuses on choosing backup resources in
a multicast group. In contrast, the primary ob-
jective of our modification is finding a “better”
path to a given resource rather than finding other
versions of resources. However, ideas and lessons
from their work, such as maintaining business
level information to avoid busy nodes, can be
incorporated to our work.

3 Solutions

Our solution to the issue is to introduce 1)
a logging framework, and 2) an alternate met-
ric taking into account performance information.
A graphical representation of the system can be
found in Figure 1.

3.1 Alternate Metric

To find out the alternate metric, we use a
weighted average of the XOR distance, the al-
ternate idle CPU power and the idle memory
capacity. The standard Kademlia model takes

into account solely the XOR distance between
the hashed two nodes. By taking the weighted
average of several performance metrics, we hope
to show that the additional information about
resource usage can improve the routing perfor-
mance.

In more mathematical language, we have that
our new metric is

d(z,y) = w1 %k +wex C+ws*x M +wyxN (1)

In the above equation, we have that k is the
XOR key distance, C' is the CPU capacity, M
is the memory capacity and N is the network
capacity.

The reason for the choice of a weighted average
is that it is the simplest function of the param-
eters. We considered other more complex func-
tions, such as those that take into account the
standard deviation and other statistical meth-
ods, but we reasoned that we wanted the sim-
plest possible test as a proof of concept, which
was the use of a weighted average.

The weights for the weighted average was
hard-coded by hand, due to time constraints. At
first we gave equal weighting to all the param-
eters. Nonetheless, this is an easily adjustable
parameter that leaves more opportunity for fu-
ture work. It is also possible for the system to
learn and adaptively change these parameters.

3.2 Logging Framework

The logging framework consists of two differ-
ent parts: local logs being written to by pro-
cess and a server-client system that allows any
node to ping another node for system informa-
tion. The goal of the framework is the attempt
to capture the key statistics of a machine. This
it does by capturing the output of Linux com-
mands nethogs, mpstat and uptime. Each ma-
chine keeps track of its own logs, which is pe-
riodically updated to keep track of the last five
logs. The reason for this selection of the last five
logs is that they provide an adequate picture of
what is happening in the system in real-time.

Linux Utility Information Units
nethogs send bandwidth KB/sec
nethogs recv bandwidth KB/sec
uptime load average (past 1 minutes) | percentage
uptime load average (past 5 minutes) | percentage
uptime load average (past 15 minutes) | percentage
mpstat user cpu usage percentage
mpstat system cpu usage percentage
mpstat idle cpu usage percentage

Table 1: System Information Logged

The client-server system consists of a server
process running on each node, waiting for pings,
and the client which sends requests for system
information on a need-to-know basis. The imple-
mentation uses TCP /IP, and we have developed
a simple protocol for the sending of messages
that begins with the client sending a simple hello
message and the server sending a message con-
sisting of all the requested system information,
and ending with the client sending an acknowl-
edgement message. The server-side of the system
runs non-stop on each node. It is called by the
main as a forked process, and it is reasonably
robust against multiple requests, since the ping-
ing sent by the client and the response by the
server is very fast. The client, however, is also
activated as a forked process when information
is required. This allows the information sent to
the client to be fresh, which is important in our
system that wants to take into account real-time
performance and resource availability.

3.3 Adaptive Routing

Having introduced the distance metric and the
logging framework, we now present the adaptive
routing protocol in Algorithm[I] Our protocol is
built on top of the internal routing algorithm in
the DHT. Both Chord and Kademlia use an iter-
ative query to locate the destination. At each it-
eration, the DHT selects some candidates, from
which the next-hop node is chosen. We insert
our distance metric here. To adapt to real-time

capacity, we leverage the logging framework to
obtain the load information from each of the can-
didates.

Algorithm 1 Adaptive Routing in DHT

1: while target not found do

2: DHT Routing selects some candidates

3: Query candidates for load information

4: Calculate distance metric

5 Route to the candidate with smallest dis-
tance

6: end while

3.4 Maintaining the Convergence

Guarantee

One question that should be addressed
whether the convergence guarantee still holds
with the new routing algorithm in place of the
old one. Most, if not all, DHTs have a math-
ematically proven guarantee showing that any
search request for an id in the key space will
terminate in finite steps. Chord and Kademlia
are examples, and they rely on the mathemat-
ical properties of the id keyspace and the dis-
tance metric they employ. The distance met-
rics can be the literal distance in the keyspace
(Chord), or the XOR value of two binary ids.
Thus, it is natural to ask if the new routing al-
gorithm has this property. Although we do not
provide a universal guarantee of convergence for
all DHTs, we show that exploiting the proper-

ties of the structures or algorithms employed in
Chord and Kademlia, we were able to preserve
the convergence guarantee for the two DHTs.
Chord’s convergence is implemented and tested
in our simulation program.

One key characteristic of Chord’s routing algo-
rithm is that no the node approaches the target
from a clockwise direction. Therefore, to main-
tain the convergence guarantee with our new dis-
tance metric, we need only compare the nodes
that are on the arc clockwise from the current
node to the destination, and ignore the rest.

Likewise, Kademlia’s routing protocol can be
abstracted as executing Chord’s routing in paral-
lel through the usage of k-buckets, which is main-
tained to choose the k£ “best” nodes with respect
to the metric function. To ensure convergence in
finite steps, we propose that we reserve 1 bucket
to choose according to the old distance metric,
while the rest k — 1 buckets are filled using the
new function. However, we did not include this
in our experiments.

4 Experiment & Results

We have conducted two different experiments
as a proof-of-concept. The first is a simulation
that simulates environment loads and a toy ver-
sion of our model and the other is a realistic
experiment conducted on eight virtual machine
nodes.

4.1 Virtual Machine Experiment

Our implementation for the virtual machine
experiment is based on OpenDHT, an open-
source implementation of the Kademlia dis-
tributed hash table. OpenDHT is written in
C++11, and we built on top of the open-source
project. In total, we contributed around 2.5k
lines of code on top of the original implementa-
tion. The logging system was implemented from
scratch, and the testing framework that we built
on top of OpenDHT was novel.

The setup for this experiment is the use of

eight virtual nodes. Each virtual node has its
own unique IP, which is what it uses to commu-
nicate to other nodes and to be uniquely iden-
tified by that address. It also has its own local
memory and its own logging system.

We compare our implementation of the adap-
tive DHT and distance metric to the original
Kademlia XOR. The main metric that we are
using to judge performance is that of put and re-
trieve speed (in seconds). We also consider three
different environments for the tests. An environ-
ment can either be a low-computation regime, a
high-computation regime, a low-bandwith regime,
and a high-bandwidth regime. To create the dis-
parities in such regimes, we artificially create
workload on the nodes, by using the Linux utility
stress.

Our main results can be found in the Table 2.

4.2 Timing Out on Get

The results for put can be found in Table 3.
We notice that the unaltered algorithm domi-
nates that of the resource-aware model. The
likely reason for this is that it pings for system
information more than once, while across the en-
tire network. The latency from such pings adds
up rapidly to lead to very expensive put and get
operations.

Based on our implementation, there is some-
times something wrong with the get operation.
This could either be on a theoretical or an imple-
mentation problem. When we replaced the XOR
with our weighted average version, get seemed to
stop working perfectly. On approximately 5% of
queries, the request would time out. There is no
longer the assurance of perfectness of the result.

This curious phenomenon also did not occur
on our two node experiments, which shows that
it might be due to the complexity of the finger
tables. We were unfortunately unable to exactly
to pinpoint the exact source of the error, which
could be either a theoretical error or a problem
with our implementation.

Based on this we do not include the outliers
in the averages for the get operation, since they

Orig Var .
0.0030- 0.0030 1
o o
O i)
2 L
@ q 0.0025 A
E 0.0025+ E
= — :
:
0.0020 A .
L]
0.0020 .
L
Figure 2: Comparison of the Put Low Bandwidth Case
80 1]
60 1
"%' —
O 40 1
&
N “—l_l—
0 == —I_I_ —{ 1 e T

0.25 0.50 0.75
Latency(in ms)

Figure 3: Distribution of Latencies

1.00

Environment Normal | Resource-Aware
Low Bandwidth 0.00103 0.0027
High Bandwidth 0.00215 0.028

Low Computation | 0.0010 0.0012

High Computation | 0.00215 0.022

Table 2: Results of Put Experiments (All 150 Trials)

Statistic Normal | Resource-Aware
Mean 0.0023 0.0933
1st Quartile | 0.0018 0.079
Median 0.0020 0.096
3rd Quartile | 0.0023 0.117

Table 3: Results of Get Experiments (100 Trials
& High Bandwidth)

would unfairly skew the data.

4.3 Path Length and k£ in Simulation

Due to the small size and the limited nature of
the available network (8 nodes running on VMs),
we also ran experiments on a simulated overlay
network.

For the experiment, we randomly created 1000
nodes with random unique ids in 2'0-gized
keyspace, and initialized them with random re-
source states. Then, we generated 100 random
unique ids to be put into the nodes, and sampled
with replacement 100 ids from the put lists.

However, it is reasonable to expect that assign-
ing a simulated time value for a hop from nodeA
to nodeB in the simulation will not only be unre-
alistic to practical environment, but also overfit-
ted to the new routing algorithm we test. There-
fore, we instead measured the average length of
routing paths, i.e. the number of nodes a routing
visits in the course of locating the destination.

In Figure 4, pathl represents the average
length of path for the original algorithm, while
path?2 that of our algorithm. Note that the z-axis
represents the number of k, the size of the finger
table, in other words, the number of neighbors

Average Number of paths

—— pathl
path2

400

w
=3
s

Average Path Length
N
o
o

,_.
o
o

T T T T T T T
0 5 10 15 20 25 30
Finger table Size: k

Figure 4: Finger Table Size and Path Length

whose addresses a node is aware of.

Looking at the graph, it is not surprising that
pathl is always below path2, since the original
routing algorithm by definition takes the shortest
route in terms of keyspace distance. However, it
is notable that the discrepancy between pathl
and path?2 is largest in the lower range (0 — 10)
while both similarly plateau to very low levels as
k becomes large.

The decreasing trend itself is not surprising,
since larger finger tables means larger “hop-
pinh”. However, it is plausible that the decreas-
ing discrepancy of path length with large ks sug-
gests that if a network is assumed to have nodes
which act as severe bottlenecks, the resource-
aware algorithm might result in significant gain
in terms of speed, given that the “go-around”
behavior only adds a few steps compared to the
original routing scheme.

5 Conclusions

The conclusions that we draw is that 1) the
logging system and the pinging system makes the
system slower than the original Kademlia imple-
mentation, 2) that the environments rightly af-
fect the performance of put and get, 3) that there
are some issues associated with deviating from a
theoretically correct model and 4) that there is
much opportunity for further work.

5.1 Comparison to Normal

As can be seen in the side-by-side boxplots in
Figure 1, we can notice the discrepancy between
the original implementation and our implemen-
tation. The mean time for the original Kadem-
lia operations are much faster than that for our
We hypothesize that the difference is
largely due to the cost required to ping the sys-
tem information, which adds latency to the put
operation.

To see that this is a plausible explanation for
the slowdown of our model, we refer to Figure
2. This is the plot of the distribution of the la-
tency between two nodes on our system. We
can see that the values of the latency between
two nodes are distributed around 0.60 ms, which
could account for almost one half of the differ-
ence in times between the original Kademlia and
our variant. We therefore believe that we have
ample evidence to claim that what we thought
was one selling point of our system, the ability
to query other systems was in fact a cause for
the lack of scalability and performance.

variant.

5.2 Effects of Environments

As one can see in Table 2, the increase in en-
vironment load leads to an increase in the time.
However, as one can see from the comparison
with the normal Kademlia model.

5.3 The Issue with Get

When Kademlia was originally published,
most of the paper was focused on the theoret-

ical correctness of the algorithm. The parts that
needed to work, such as the searching and the
finger table were shown to be correct. However,
get in our implementation does not seem to work
perfectly. The possibility is that the correctness
proof does not extend to our modified operation
or that proofs of correctness are still crucially im-
portant, or the possibility that the modification
of the code had a negative interaction of another
part of the code. We found this disheartening,
nonetheless it shows that a very interesting null
result. This issue only seemed to appear when
in the final testing phase when we increased the
number of nodes, which again is a very interest-
ing null result.

One possible explanation that we have for the
issue is that at compilation time for the program,
there is no way that the system can predict which
nodes are going to be most overused. In the orig-
inal Kademlia, however, the knowledge of the
function is needed to place the nodes into bins
in the first place. But we are still undecided on
the exact source of the error.

6 Future Work

6.1 More realistic testing environ-
ment

A glaring limitation of our experiment in this
work that the testing involves a very small num-
ber (8) of machines located in a single local area
network (Swarthmore College). Thus, the result
of the test cannot be easily generalized to a more
general case, because typically many DHTs in-
volves thousands or more nodes, many of them
distributed over several networks and physically
removed from each other by unlimited distance.
To remedy this, future studies would have to ob-
tain help from a large institute with access to
machine, or recruit multiple volunteers in charge
of individual nodes.

6.2 “Bootstrapping” the Simulation

with real data

Alternative way to test a large overlay net-
work is to simulate multiple nodes. However,
as outlined in our experiment section, it is dif-
ficult to imitate a large, realistic network with-
out “overfitting” the simulation parameters in
the sense that we are adjusting the simulated
network to behave in a way that our modified
algorithm works well.

Another idea we developed but did not man-
age to test in the scope of this work is simulat-
ing a large network (1000 or mode nodes) from
a data set generated by a real, but smaller (8,
for example) network. Specifically, we propose
the latency of a ping from a node A to another
node B as a proxy for measuring the latency of
inter node-communication in the process of DHT
routing. Then, data points in the form of (nodeA
uniq id and states, nodeB id resource states, ping
latency) can be used to model the states and the
routing time between nodes in a simulated net-
work.

6.3 “Better” decision function

Because we used a simple weighted average to
be used with our XOR function, there are possi-
bilities of using more complex functions. One
fruitful way to think of the XOR function is
as a way of measuring closeness or distance as
mapped to True or False. Therefore, methods
that lead to classifying two nodes as close or far
can be very effective. There is the possibility of
using machine learning methods to predict close-
ness based on the system information.

6.3.1 A Grid Search of Algorithm Pa-
rameters

Moreover, the choice of our parameters, i.e the
weights, has largely been arbitrarily made, al-
though a few iterations of trial-and-error adjust-
ing has been made. This means that although in
some cases our modified algorithm showed im-
proved performance, there might be a set of more

optimal parameters. In order to search for this
parameters, we propose a grid search of param-
eters over a data set gathered from simulated,
“bootstrapped” networks mentioned above, but
leave the challenge for future work.

6.3.2 Caching

Another possibility that helps with the latency
problem of communicating using the client-
server model is the use of caching. We hypothe-
size that caching node information and updating
as necessary will save a lot of time. This saves
on the network latency, which we have argued
for the main cause of the slowdown of our vari-
ant compared to the original.

7 Meta-discussion

The hardest parts of the project were working
with an already well-established codebase, and
configuring multiple machines over a network.

7.1 Working with Large Codebase

The difficulty of working with a large and well-
established codebase like OpenDHT is that there
is it requires familiarity and understanding of the
organization of the programs, and knowledge of
language-specific syntax. To add to this prob-
lem, OpenDHT did not come with a user-friendly
documentation, nor were the source code well
commented or explained thoroughly. If we had
to do this project over again, we would like to
have implemented everything from scratch, for a
large portion of the time spent for this project
was invested in obtaining a functional compre-
hension of the codebase.

Abstraction is a programming concept where
the details of the lower-level implementation are
hidden to the user. This is in contrast to the con-
cept of end-to-end system principles which gives
the freedom and the ability to manipulate the
code to the user. What we have learned is that
there is a certain downside to abstraction when
there is a need to break it. For example, in our

use of OpenDHT, whenever we had to change
a fundamental part of the core of the system,
it took an enormous amount of time and effort.
This is because we are in effect breaking the ab-
straction to get to the core of the code.

7.2 Configuring Nodes/Lack of Sim-
ple Networking Tools and Frame-
work

When dealing with the multiple nodes as in
distributed computing, we rapidly found that
our favorite tools from the sequential world were
not useful at all. For example, something as in-
tuitive as bash scripting in the sequential world
was made exponentially more difficult in the dis-
tributed world, as did other tools such as wval-
grind.

Another type of difficulty was manipulating
the eight nodes that we were given at once.
When we had to update and download the pack-
ages, it was a nightmare to have to do that over
the nodes at once. Again, problems easy in the
sequential world such as running a script on a
node became a complicated mess of forking and
communication.

References

[1] Andreas Binzenhofer and Holger Schnabel.
Improving the performance and robust-
ness of kademlia-based overlay networks.
In Kommunikation in Verteilten Systemen
(KiVS), pages 15-26. Springer, 2007.

Ian Clarke, Scott G. Miller, Theodore W.
Hong, Oskar Sandberg, and Brandon Wi-
ley. Protecting free expression online with
freenet. IEEE Internet Computing, 6(1):40—
49, January 2002.

Rubén Cuevas, Manuel Uruena, and Albert
Banchs. Routing fairness in chord: analy-
sis and enhancement. In INFOCOM 2009,
IEEFE, pages 1449-1457. IEEE, 2009.

10

[4] Michael J. Freedman, Eric Freudenthal, and
David Mazieres. Democratizing content
publication with coral. In Proceedings of the
1st Conference on Symposium on Networked
Systems Design and Implementation - Vol-
ume 1, NSDI’04, pages 18-18, Berkeley, CA,
USA, 2004. USENIX Association.

P Brighten Godfrey and Ion Stoica. Het-
erogeneity and load balance in distributed
hash tables. In INFOCOM 2005. 24th An-
nual Joint Conference of the IEEE Com-
puter and Communications Societies. Pro-
ceedings IEEFE, volume 1, pages 596-606.
IEEE, 2005.

Feng Hong, Minglu Li, Xinda Lu, Jiadi
Yu, Yi Wang, and Ying Li. Hp-chord: A
peer-to-peer overlay to achieve better rout-
ing efficiency by exploiting heterogeneity
and proximity. In International Conference
on Grid and Cooperative Computing, pages
626—633. Springer, 2004.

Haifeng Jiang, Feng Li, Xingfeng Jiang, and
Lei Han. Packet routing method, system,
device and method, system for selecting
backup resource.

Youki Kadobayashi. Achieving heterogene-
ity and fairness in kademlia. In Applications
and the Internet Workshops, 2004. SAINT
2004 Workshops. 2004 International Sym-
posium on, pages 546-551. IEEE, 2004.

Imre Kelényi and Jukka K Nurminen.
Optimizing energy consumption of mobile
nodes in heterogeneous kademlia-based dis-
tributed hash tables. In Next Generation
Mobile Applications, Services and Technolo-
gies, 2008. NGMAST’08. The Second Inter-
national Conference on, pages 70-75. IEEE,
2008.

Petar Maymounkov and David Magzieres.
Kademlia: A peer-to-peer information sys-
tem based on the xor metric. In Revised Pa-
pers from the First International Workshop

[11]

[12]

[14]

on Peer-to-Peer Systems, IPTPS ’01, pages
53-65, London, UK, UK, 2002. Springer-
Verlag.

Marti A. Motoyama and George Varghese.
Crosstalk: Scalably interconnecting instant
messaging networks. In Proceedings of the
2Nd ACM Workshop on Online Social Net-
works, WOSN ’09, pages 61-68, New York,
NY, USA, 2009. ACM.

Johan Pouwelse, PawelGarbacki, Dick
Epema, and Henk Sips. The bittorrent
p2p file-sharing system: Measurements and
analysis. In Proceedings of the 4th Interna-
tional Conference on Peer-to-Peer Systems,
IPTPS’05, pages 205-216, Berlin, Heidel-
berg, 2005. Springer-Verlag.

Venugopalan Ramasubramanian and
Emin Giin Sirer. The design and imple-
mentation of a next generation name service
for the internet. In Proceedings of the 200
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications, SIGCOMM ’04, pages
331-342, New York, NY, USA, 2004. ACM.

Sylvia Ratnasamy, Paul Francis, Mark Han-
dley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In
Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and
Protocols for Computer Communications,
SIGCOMM °01, pages 161-172, New York,
NY, USA, 2001. ACM.

Sylvia Ratnasamy, Ion Stoica, and Scott
Shenker. Routing algorithms for dhts: Some
open questions. In International Work-
shop on Peer-to-Peer Systems, pages 45-52.
Springer, 2002.

Antony I. T. Rowstron and Peter Dr-
uschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale

peer-to-peer systems. In Proceedings of
the IFIP/ACM International Conference on

11

[19]

Distributed Systems Platforms Heidelberg,
Middleware ’01, pages 329-350, London,
UK, UK, 2001. Springer-Verlag.

Stefan Saroiu, P Krishna Gummadi, and
Steven D Gribble. Measurement study of
peer-to-peer file sharing systems. In Mul-
timedia Computing and Networking 2002,
volume 4673, pages 156-171. International
Society for Optics and Photonics, 2001.

Ton Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM
Comput. Commun. Rev., 31(4):149-160,
August 2001.

Hao Zhang, Yonggang Wen, Haiyong Xie,
and Nenghai Yu. A survey on distributed
hash table (dht): Theory, platforms, and
applications. 2013.

Hui Zhang, Ashish Goel, and Ramesh
Govindan. Incrementally improving lookup
latency in distributed hash table systems.
In ACM SIGMETRICS Performance Eval-
uation Review, volume 31, pages 114-125.
ACM, 2003.

B. Y. Zhao, Ling Huang, J. Stribling, S. C.
Rhea, A. D. Joseph, and J. D. Kubiatow-
icz. Tapestry: A resilient global-scale over-
lay for service deployment. IFEFE J.Sel. A.
Commun., 22(1):41-53, September 2006.

	Introduction
	Related Work
	Solutions
	Alternate Metric
	Logging Framework
	Adaptive Routing
	Maintaining the Convergence Guarantee

	Experiment & Results
	Virtual Machine Experiment
	Timing Out on Get
	Path Length and k in Simulation

	Conclusions
	Comparison to Normal
	Effects of Environments
	The Issue with Get

	Future Work
	More realistic testing environment
	``Bootstrapping'' the Simulation with real data
	``Better'' decision function
	A Grid Search of Algorithm Parameters
	Caching

	Meta-discussion
	Working with Large Codebase
	Configuring Nodes/Lack of Simple Networking Tools and Framework

