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Abstract—This report is a case study of how development
of quantum algorithms can not only lead to quantum methods
that achieve speedup over classical algorithms but also provide
insights for improving classical solutions. Specifically, we focus
on the case of collaborative recommendation systems by matrix
sampling and describe the process of how the potential quantum
speedup was identified and implemented. Then, we look at
an improved classical algorithm that builds on the quantum
algorithm and achieves equivalent computational complexity
and introduce a few guidelines a quantum machine learning
researchers may employ.

Index Terms—quantum computation, quantum complexity,
recommendation systems, low-rank approximation

I. INTRODUCTION

In this report, we examine three quantum computation-
related papers and provide a synopsis of how development
of quantum algorithms to a given problem can not only
lead to quantum methods that achieve speedup over classical
algorithms but also provide insights for improving classical
solutions. Specifically, we focus on the case of collabora-
tive recommendation systems by matrix reconstruction and
illustrate the process of how possible quantum speedup was
identified and implemented in the context of recommendation
system, which in turn led to a classical algorithm that achieves
equivalent computational complexity. To this end, we read and
summarize the following three papers:

1) On the Power of Quantum Computation by Daniel R.
Simon [2]. Using this paper, we introduce the model
of quantum computation and discuss the promise and
limitation of quantum computation.

2) Quantum Recommendation Systems by Iordanis Kereni-
dis and Anupam Prakash [!1] implements a quantum
recommendation algorithm which achieves exponential
speedup over conventional classical methods.

3) A Quantum-inspired Classical Algorithm for Recom-
mendation Systems by Ewin Tang [12] takes hint from
[11] and proposes a classical algorithm with equiv-
alent speedup. Moreover, the paper generalizes from
the observation that the dequantization of the quantum
recommendation system led to a classical recommen-
dation algorithm with equivalent complexity and pro-
vides a useful guideline for quantum machine learning
researchers.
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The report is organized as follows: In Section II, we briefly
introduce relevant literature in quantum computation and rec-
ommendation systems other than the ones covered in this
report. Through Section III, IV, and V, we summarize each
paper while highlighting how the quantum algorithm informed
an improved classical algorithm.

II. RELATED WORKS

Formal models of quantum computation has been pioneered
by Deutsch in his influential work [1]. Fortnow and Aaronson
also made important contributions about the relationship of
BQP and other complexity classes [3] [9]. The approach to
recommendation system covered in this project, collaborative
filtering, follows the definition and assumptions made in the
seminal work of Drineas et al [4]. Finally, the classical
recommendation algorithm by Tang builds upon the low-rank
approximation algorithm written by Frieze et al [6].

III. QUANTUM COMPUTATION AND QUANTUM SPEEDUP

Often popular media’s conception of quantum supremacy
amounts to the idea that quantum computation will bring
no-questions-asked-type exponential speedup over classical
modes of computation [10]. However, this is not the case
and effective quantum computation requires programmers to
“choreograph” the steps of computation so that the amplitudes
of the “undesirable” paths cancel out and only the desirable
configurations would remain or at least have high amplitude so
that after measurement one can obtain the desired classical out-
put with high probability. In this section, we review Simon’s
paper [2] and briefly describe the promise and limitation of
quantum computation, which in turn informs us about what
type of care and attention should be paid to claim quantum
speedup over classical computation.

A formal model of quantum computation, quantum Turing
machine (QTM), can be succinctly described informally as an
analogue of probailistic Turing machine (PTM), with mod-
ifications that conform to the laws of quantum mechanics.
Whereas each edge of the computation path of a PTM cor-
responded to a probability and thus the probability of a path
is calculated as the product of the probabilities of the edges
along the path, each edge in the computation path of a QTM
is is instead associated with an amplitude. Thus the amplitude



of a path is similarly computed as the sum of the constituent
edges’ amplitudes. More importantly, now the probability of
a configuration at each step is computed as the square of the
amplitude of the leaf nodes in the configuration. This endows
QTM with the ability to “cancel out” some configurations,
such as in (—a+a)? = 0. An important caveat is that at each
computation step the computation tree must obey the property
that the sum of all configuration’s probabilities should sum to
1. It can be shown, but omitted here, that transition functions
(or matrices) that satisfy this are unitary.

With QTMs, we can define and work with a complexity
class analogous to bounded-error probabilistic polynomial
time (BPP) by replacing the PTM in the formal definition
of BPP with a QTM. This new complexity class is called
bounded-error quantum polynomial time (BQP). Just as BPP
can be used as a proxy for the class of problems efficiently
solvable by classical (including probabilistic) computation,
BQP is representative of problems efficiently solvable by quan-
tum computation. Naturally, complexity theorists and quantum
scientists are interested in the relationship between BQP and
other classes. For instance, what are some problems not in P
or BPP but are in BQP? What about in NP (or NP-hard) and
BQP?

Unfortunately, there are only few theoretical results on the
standing of BQP in relation to other complexity classes, and
the following inclusion relationship only provides a partial
picture:

P C BPP C BQP C AWPP C PP C PP

It does not tell us whether BPP C BQP or even P C BQP.
Still, there are several pieces of evidence that quantum com-
putation does provide. Shor’s integer factorization algorithm
and Grover’s database search are some examples. However,
the bottom line is that any claim of quantum supremacy or
speedup should be carefully examined, especially given that it
is hard to show that there can be no classical algorithm that
can match a quantum algorithm’s performance.

IV. QUANTUM RECOMMENDATION SYSTEM

The algorithm proposed by Harrow, Hassidim, Lloyd[&]
was a breakthrough in quantum algorithm development and
provides a powerful tool for performing linear algebra and
machine learning operations using quantum computers. How-
ever, the HHL algorithm and HHL-based algorithms cannot
output the classical solution of the problem, and they assume
the input is both sparse and well-conditioned in order to get
a polylogarithmic performance.

On the other hand, it is natural to ask how well can quantum
algorithms perform compared to classical algorithms, under
the same problem setting and assumptions. In the work of
Kerenidis et al. [ 1], the recommendation system is used as
the problem setting to answer the previous question.

A. Recommendation System

A recommendation system uses known preference informa-
tion of m users on n products and provides a personalized
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Figure 1. BQP and Other Complexity Classes

recommendation for each individual users. For example, the
preference information can be the number of stars a user give
to a product in the review on Amazon, or whether the user
chose to skip a song on Spotity.

The preference information is usually model described by an
m X n matrix P, which is called the preference matrix. There
are two key characteristics of matrix P worth noting. First,
for a recommendation system used in an industrial setting, the
number of users and products can be more than a million,
which makes it prohibitive to store the whole preference
matrix. Second, matrix P is not based on prior information,
since an individual user won’t specify his preference on all the
products. Thus, typically there will be a lot of unknown entries
in the preference matrix. Besides, the preference matrix can
always be cast into a binary form by using some threshold or
ranking.

Most classical recommendation algorithms uses a two-stage
approach. The first stage reconstructs the low-rank approxi-
mation of the preference matrix, and restore the intermediate
result such as singular values and singular vectors. And this
stage is only performed when there is a need to update the
reconstruction to get a more accurate result with the new
data. The second stage is an online computation step using the
intermediate result each time a user sends a query. In general,
the first stage takes O(poly(mn)), and the second stage takes
O(nk), where k is rank of low-rank approximation.

B. Recommendations by Matrix Sampling

The classical algorithms which outputs the whole user
vector of the low-rank approximation are O(n). Note that to
produce a good recommendation, it is not always necessary to
know the exact preference value for every product. Instead,
all we need is a sample from the products with a high
preference value. It can be shown that sampling the low-
rank approximation of subsample matrix Ty is equivalent to
producing a good recommendation with high probability. Here
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Figure 2. Illustration of preference matrix

the subsample matrix refers to the matrix with all known
entries and 0 for the unknown entries.

When we consider how similar two matrices are, it is always
helpful to check their distance according to some distance
measure. The intuition is that if a matrix is close enough to
the underlying preference matrix, sampling from that matrix
will behave similarly as sampling from the preference matrix.
This is formally stated as follows:

Theorem 1. Let T be an approximation of the matrix T such
that HT—TH < €||T|| . Then, the probability a sample
3

according to T is a bad recommendation is
Pr(i, j)bad] < (¢/(1—¢))? (1)

This theorem guarantees that the probability of sampling
a bad recommendation will decrease exponentially as we
required that the approximation is close to the preference
matrix. This result can also be generalized to typical users,
whose known entries is close to the average.

The subsampling of preference matrix is assumed to be
according to uniform distribution, which means each entry
has a equal probability p to be sampled. And the result is
normalized to Aij = A;;/p. Following that, the subsample
matrix has desirable properties.

Theorem 2. Let A € R™" be a matrix and b = max;; A;;.
Define the matrix A to be a random matrix obtained by
subsampling with probability p = 16nb*/(n|| Al ,)? and
rescaling, that is Aij = A,;/p with probability p and 0
otherwise. With probability at least 1 — exp{—19(log n)4}
we have for any k

|A-4d|, <la- e +sviriAl: @

Since the term ||A — Ay|| is small according to the low-
rank assumption, the distance from A to Ais upper bounded
by a small value with high probability.Thus, the problem is
now reduced to how to sampling from Ay.

C. Singular Value Estimation

To project a vector onto T, it is clear that we need
to eliminate the components corresponding singular vector

with singular value out of the top-k. Since this operation
directly depends on the singular value of each component, it is
desirable that we can separate every component in the singular
vector bases, and have access to the singular value. This is
achieved by the singular value estimation algorithm. The task
is to find an algorithm within time complexity polylog(mn).
Thus any one step should not exceed this limit, including
preparing the quantum states and quantum operations.

1) Quantum State preparation: For the state preparation
stage, we need a data structure that can be used by a quantum
algorithm to do the mapping U : [i)|0) — |i)|A;), for i € [m],
corresponding to a row of the matrix, and V : |0)|5) — |A)|5),
for j € [n], corresponding to the norm for each row. It turns
out that binary search trees can satisfy these requirements.
Each row is represented by a binary search tree, with each leaf
to be the square of each entry, and the value of the root node
is the sum of two child nodes. With this data structure, there
is an established algorithm by Grover et al [5] that can create
the corresponding state by conditioned unitary transformation.

2) Phase Estimation: Phase estimation can be used to
extract eigenvalue information of a unitary transformation.
There will be an additive error to the estimated phase and
the time complexity is inversely proportional to the precision
parameter e.

Theorem 3 (Phase Estimation). Ler U be a unitary operator,
with eigenvectors |v;) and eigenvalues €' for 0; € [—m, ).
For a precision parameter € > 0, there exists a quantum algo-
rithm that runs in time O(T'(U))logn/e and with probability
1 —1/poly(n) maps a state |¢) = 3.\, o;|v;) to the state

16) = 3 jetn) aj|v;)|0;) such that 6; € 0; + € for all j € [n]

It turns out that by constructing a unitary matrix W =U -
V, where U = 2PP! — I,,, and V = 2QQ" — I,.,, the
isometry @ : R® — R™" maps a row singular vector of A
with singular value o; to an eigenvector Qu; with eigenvalue
e’ such that cos(6;/2) = 0;/||A|| . With this relationship,
once the eigenvalues are known the singular values are also
known. The whole singular value estimation process is shown
in Algorithm 1.

Algorithm 1: Singular Value Estimation
Data: A € R™*", x € R", precision parameter ¢ > 0.
Result: A quantum state with the second register being
an estimation of singular values
1 Create |z) = >, a;|v;).
2 Append a first register [0/'°2™1) and create the state
|Qz) =3, a;|Quy)
3 Perform phase estimation with precision parameter
2¢ > 0 on the input |Qx)for the unitary W = U -V and
obtain Zz CY,L'|Q’U7;, §z>
4 Compute 7; = cos (;/2)|| Al where 6; is the estimate
from phase estimation, and uncompute the output of the
phase estimation.
5 Apply the inverse of the transformation in step 2 to
obtain Zz O[i|’Ui> |52>




D. Quantum Projection

After we extract the information of the singular value,
what remains then straight forward. Note that the information
of singular values and singular vectors are all contained in
the quantum state. Since we want to distinguish components
with singular values higher than the threshold and the other
components, a second register is appended to the original
state, which is used to contain the information whether this
component in the superposition belongs to the part we are
interested in.

The value of the second register can be calculated through a
unitary transformation on the former state. This idea is general
and can be compared to the classical way. It is equivalent to
doing an “if” query and appending the Boolean result to the
end of the data. The only difference is that in the classical
setting the condition is checked one by one, while in the
quantum setting the condition is checked simultaneously, and
the workload is moved to building the corresponding unitary
transformation in physical model.

With the last register acting as an identifier, we will be
able to tell which subspace the collapsed state comes from,
by measuring the state and check the classical result of
the last register. It is worth noting that the algorithm does
not guarantee a valid output in a single iteration. Thus the
time complexity directly depends on the probability to get
valid output. If that probability is inversely exponential to
the problem size, then the expected time complexity will
always be exponential. Luckily, in our case, the expected time
complexity can be proved to be O(polylog(mn))

Algorithm 2: Quantum Projection with Threshold
Data: A € R™" x € R™, parameters 0, > 0.
Result: A sample from the row rank approximation Ay
1 Create |z) = >, a;|v;)
2 Apply the singular value estimation on |x) with precision
€= %m to obtain the state ), a;|v;)|5;)

3 Apply on a second new register the unitary V that maps
[t)]0) — [£)]1) if t < 0 — (k/2)c and |¢)]|0) — [¢)|0)
otherwise, to get the state
s vl [0) + s aulvi)la)|L)

4 Apply the singular value estimation on the above state to
erase the second register
>ies @ilvi)|0) + 3 e 5 ouilvi)[1)

5 Measure the second register in the standard basis. If the
outcome is |0), output the first register and exit.
Otherwise repeat step 1.

E. Analysis

For the algorithm state above, it is necessary to check its
performance in correctness and expected running time. Just as
any probabilistic algorithm, the result is not always correct. If
the probability of correct is very small, the result will be of
little value if any. And as mentioned before, each iteration of

algorithm does not guarantee a valid output, so the expected
time becomes what we care about. And it can be showed that

9¢(1+9¢
(it )2

Pri g (T [(Zvj)bad] < O¢
Usrd (Tzoe (s — 5P =0 =)

For the expected running time, with at least (1 — &)(1 — 6 —
¢)m users in the typical set, the expected running time is
O(polylog(mmn)poly(k)), where &, 6, ¢ have small values.

V. CLASSICAL RECOMMENDATION SYSTEM

In the previous section, we have seen that a quantum
matrix sampling method supported by a relatively simple data
structure resulted in an exponential speedup over previous
classical algorithms. Thus, it is tempting to claim that akin
to Shor’s integer factorization algorithm and Grover’s search
algorithm, Kerenidis et al’s quatun recommendation system
serves as an indirect evidence of the advantange of quantum
computation over classical computation. However, this is not
the case since there is a classical algorithm that achieves
equivalent speedup.

A. L%-norm sampling

The classical algorithms adopts essentially the same ap-
proach as the quantum algorithm to the recommendation prob-
lem, using matrix sampling instead of matrix reconstruction
to avoid polynomial complexity while computing a low-rank
approximation of the preference matrix. However, instead of
relying on quantum measurement to get a recommendation
sample, the classical algorithm employs the BST-like data
structure to satisfy £2-norm sampling assumption required by
Frieze et al’s algorithm for finding low-rank approximations.
Specifically, the £2-norm sampling assumption requires that
given a nonzero vector x € R™, we can sample an entry z;
with probability
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With this sampling operation provided, we can use Frieze et
al’s low-rank approximation algorithm to get a description of
an approximation of the preference matrix, which in turn is
used to sample a good recommendation.

loll®

Figure 3. An Example BST



Note that with the classical BST structure assumed, we can

perform £2-norm sampling in the following way:

1) Start from the root node.

2) Let the norms assigned to the left and right child node
be a and b respectively. Choose the left child with
probability ﬁb Otherwise, choose the right child.

3) Go to the chosen child node.

4) If the child node is a leaf node, terminate. Otherwise,
go to Step 2.

B. ModFKV and Recommendation Sampling Algorithm

Here, for completeness, we provide the core algorithms used
in the improved classical recommendation system, ModFKV
algorithm and the low-rank sampling algorithm.

Algorithm 3: ModFKV
Data: A Data Structure Encoding Matrix A € R™" that
supports the £2-norm operations, threshold o,
error parameters €, 7
Result: A description of an output matrix D
Set K = ||A||%/0? and € = ne? ;
4
Set ¢ = O(%r);
Sample rows iy, - -+ ,iq from D g;
Let F denote the distribution given by choosing an
s ~y [q], and choosing a column from D4, ;
5 Sample columns ji,--- ,j, from F;
6 Let W be the resulting gq row-and-column-normalized

—

= W N

submatrix W, := ——Airic .
PG FGe
7 Compute the left singular vectors of W u(D), ...  u*)
that correspond to singular values ¢V, - -, o(*) larger
than o;
8 Output iy, ...,%4, U € R2** the matrix whose ith column

is u(®, and 3 € RFXF the diagonal matrix whose ¢th
entry on the diagonal is o(¥). This is the description of
the output matrix D

ModFKYV algorithm adapts and slightly modifies from
Frieze et al’s fast algorithm to find a rank %k approximation of
a matrix [6]. The only difference between the original FKV
algorithm and ModFKYV algorithm is that the latter includes
additioinal error parameters to get a low-rank approximation
bound that matches that of the quantum algorithm. Using
ModFKV as a subroutine, now we can reconstruct a low-
rank reconstruction of the preference matrix and sample a
recommendation s.

Finally, we note that this algorithm runs in
O(poly(k)log(mn)). Without delving into a complete
analysis of the comFlexity, this runtime can be broken down
into the O(poly (Al e L % ”gZH)), which is independent of
the dimensions m, n of the preference matrix, and O(log mn)
required for sampling operations. While it is polynomially
slower than the quantum algorithm, Tang’s classical algorithm
still achieves an exponential speedup over previous classical
methods. For a more detailed discussion and analysis of the
algorithm, we refer the reader to [6] and [12].

Algorithm 4: Low-rank approximation sampling

Data: A Data Structure Encoding Matrix A € R™" that
supports the £2-norm operations, user i € [m)],
threshold o, € > 0, n € (0,1]

Result: Sample s € [n]

1 Run ModFKV with parameters (o, €,7) to get a
description of D = AVVT = ASTUS2UTS;

2 Estimate A;ST entrywise with parameter % to estimate
(A;, SE) for all ¢ € [q]. Let est be the resulting 1 x ¢
vector of estimates;

3 Compute estUS2UT with matrix-vector multiplication;

4 Sample s from (esthEQUT)S ;

5 Output s

C. Guideline for Quantum Machine Learning Researchers

Motivated by the observation that the dequantization of a
quantum algorithm led to an equivalent speedup, we can derive
the following rules of thumbs for quantum machine learning
algorithm developers:

e Match and compare quantum machine learning algo-
rithms with state preparation assumptions/requirement to
classical algorithms with that uses sampling operations.

e If a quantum machine learning algorithm uses state
preparation assumptions, then it should be able to surpass
the capabilities of classical algorithms with £2- sampling.
Not only is quantum data preparation assumption often
non-trivial to satisfy, but also in many cases we already
know how to perform fast classical sampling on existing
computers.

e When comparing quantum machine learning algorithms
to classical machine learning algorithms in the context of
finding speedups, quantum state preparation assumptions
should be matched with £2-norm sampling assumptions
in the classical ML model.

VI. CONCLUSION

According to Aaronson [10], writers of quantum machine
learning algorithms must “read the fine print”, meaning that
special attention should be given to the whole range of differ-
ent assumptions and conditions that need to be met before the
algorithm can be considered implementable. This is not only to
ensure that the proposed algorithm is realizable, but also to see
if the necessary assumptions allow for an equivalent or better
classical algorithm. Our report illustrates that by reading the
“fine print”, one can not only gain an improved understanding
of quantum algorithms but also be gifted with valuable insights
that may lead to improved classical algorithms.
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